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Abstract. This manuscript deals with aspects of dense plasma behavior and
modeling in a cut-off pseudo-potential figure. The method of cut-off pseudo
potentials, both Coulomb and Hartree-Fock ones, has been used e.g. in a de-
scription of dense astrophysical plasma. Here are presented some of the aspects
of the model and analysis of the behavior of dipole moments. The presented
results are important for the estimation of the optical properties of moderate
and high density hydrogen astrophysical plasma. The behavior of such plasma
is also of interest in fusion experiments and various laboratory research.
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1. Introduction

Both theoretical and experimental studies are interested in the issues of radiative
transfer, energy transport, and plasma opacity under moderate and strong non-
ideality (van Horn, 1991; Treumann & Baumjohann, 1997; Rogers & Iglesias,
1998; Vitel, 2004; Mihajlov et al., 2011a; Khrapak & Khrapak, 2020). In recent
decades, a large number of theoretical and experimental investigations have
focused on the strong coupling and density effects in plasma radiation (Kobzev
& Popovich, 2013; Remington, 2005; Uzdensky & Rightley, 2014). Moreover,
Machine learning (ML) was used in order to estimate plasma parameters and
characteristics of such systems (Akçay et al., 2021; Trieschmann et al., 2023).
The plasma of the inner layers of the solar atmosphere and partially ionized
layers of other stellar atmospheres, such as the atmospheres of DA white dwarfs
are taken into consideration (Bodmer & Bochsler, 2000; Srećković et al., 2017;
Chabrier et al., 2006; Somov, 2006).
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In many-particle systems it is common to make a switch from a variety of
particles in a system toward a model particle, the so-called pseudo particle,
(Fortov et al., 2006; Mihajlov et al., 2011b; Douis & Meftah, 2013; Srećković
et al., 2018). The virtual particle that possesses the average behavior of all of the
system particles in a form of averaged one. That behavior is described with the
help of averaged, pseudo-potential (see e.g. Ignjatović et al., 2017, and references
therein). The usage of pseudo-potentials relaxes a numerical requirement, since
the solution methods are simpler than for the system of particles and as such
code is capable of running on a desktop computer, e.g. it does not need extensive
computing power.

It is well known that Coulomb collisions between charged particles have the
ability to transfer energy and cause the plasma to heat or cool. The control of
the electron heat flux in the solar wind appears to be influenced by Coulomb
collisions (Kalman et al., 2006; Salem et al., 2003). Additionally, the stability
or instability of plasma configurations can be influenced by Coulomb forces.
For instance, stable or unstable magnetic structures may arise as a result of the
equilibrium between Coulomb and magnetic forces. In addition to influencing the
transport of charged particles in solar plasma, which can alter their speed and
distribution, Coulomb forces can also contribute to the acceleration of particles
in solar plasma, as in the case of solar flares or coronal mass ejections (see e.g.
Bodmer & Bochsler, 2000; Gordovskyy et al., 2005).

2. Theory

In order to have some adequate representation of the plasma characteristics one
of the most common parameters is a non-ideality parameter, Γ, given in simplest
form applicable for hydrogen plasma given by
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It presents a ratio of the intrinsic potential energy pf plasma divided by ther-
mal energy, that could be related to the kinetic energy of plasma constituents
(Tkachenko et al., 2006; Adamyan et al., 2009; Sakan et al., 2018). Here we are
dealing with describing of plasma of mild nonideality, up to strongly nonideal
plasma, 0.1 ≤ Γ ≤ 2.

To calculate the optical properties of plasma the Schroedinger equation that
introduces the collective plasma pseudo-potential should be solved (Prandini
et al., 2018). For the case of hydrogen atom in plasma the simple form of pseudo-
potential, cut-off Coulomb one, possesses the ability to have an analytical solu-
tions in entire radial space as well as all bond as well as free solutions.
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where rcut is cut off radius (see e.g. Mihajlov et al., 2011a).
In later work it has been proven that the Hartree-Fock potential could be

used instead of physically more correct Coulomb one. So the potential, could
be substituted with the Hartree-Fock one shifted by the average plasma energy
1/rcut. It also relaxes the numerical complexity of the calculations, and in case
of hydrogen the overall relative error is comparable or smaller than 1 · 10−7.

In dipole approximation, that is valid for high density plasma,the radial part
of equation is of interest. By the introduction of the substitution R(r) = P (r)/r
it becomes

d2P

dr2
+

[
2m

h̄2 (E − U(r))− l(l + 1)

r2

]
P = 0. (3)
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Figure 1. The plasma influence onto dipole matrix element for the transitions from

main quantum number n = 4 onto states with n = 2.

In this contribution, we will present computed quantities, i.e. a dataset, and
explain the results and future perspectives.

3. Results and discussion

Here, a behavior of plasma influence onto the dipole matrix elements is dis-
cussed. In Fig. 1 a influence of average plasma potential 1/rc on the dipole
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matrix element is shown. It could be seen that for the same main quantum
number transition, from n = 4 to n = 2 the From Fig. 2 the influence of the en-
larged plasma potential energy, e.g. diminishing of rc, the influence of plasma is
dominant onto the far most outer shell. This is expected behavior, but with the
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Figure 2. The plasma influence onto dipole matrix element for the transitions onto

1s state.

further steps that have been carried out it is expected to have a more adequate
pseudo-potential model for describing of plasma influence.

The presented results could show a behavior of the dipole matrix elements
inside plasma. As such they could be used as a mark of the real behavior of
emitter in plasma. The work on calculating a more adequate pseudo-potentials
that could characterize a better plasma influence onto the emitter is in progress.
The results presented here could be of interest in describing of hydrogen astro-
physical plasma optical properties in area od plasmas of moderate and high
non-ideality. The behavior of such plasma is also of interest in fusion experi-
ments and various laboratory research.

4. Final remarks and future work

This work examines dense plasma behavior and modeling in a cut-off pseudo-
potential figure. Cut-off pseudopotentials, including Coulomb and Hartree-Fock
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models, have been used to describe dense astrophysical plasma. The given re-
sults are crucial for estimating the optical characteristics of moderate and high
density hydrogen astrophysical plasma. Plasma behavior is relevant to fusion
experiments and laboratory research using ML (see e.g. Sakan et al., 2022; Lem-
ishko et al., 2024, and references therein).

The findings and their analysis demonstrate the applications’ interdisci-
plinary nature. This work’s perspective and short-term goal is to use machine
learning for astrophysical plasma research.
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learning methods for probabilistic locked-mode predictors in tokamak plasmas. 2021,
Phys. Plasmas, 28, DOI:10.1063/5.0053670

Bodmer, R. & Bochsler, P., Influence of Coulomb collisions on isotopic and elemental
fractionation in the solar wind acceleration process. 2000, Journal of Geophysical
Research, 105, 47, DOI:10.1029/1999JA900434

Chabrier, G., Saumon, D., & Potekhin, A. Y., Dense plasmas in astrophysics: from
giant planets to neutron stars. 2006, J. Phys. A, 39, 4411, DOI:10.1088/0305-

4470/39/17/S16

Douis, S. & Meftah, M. T., Correlation Function and Electronic Spectral Line Broad-
ening in Relativistic Plasmas. 2013, Serbian Astronomical Journal, 186, 15, DOI:
10.2298/SAJ130218002D

Fortov, V., Iakubov, I., & Khrapak, A. 2006, Physics of Strongly Coupled Plasma,
International Series of Monographs on Physics (OUP Oxford), ISBN: 9780199299805

Gordovskyy, M., Zharkova, V. V., Voitenko, Y. M., & Goossens, M., Proton versus
electron heating in solar flares. 2005, Advances in Space Research, 35, 1743, DOI:
10.1016/j.asr.2005.07.004
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