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Abstract. We present the first light curve analysis of the two eccentric eclips-
ing binary stars EM Cet and EL Cen by using the PHOEBE Code. The selected
stars were taken from the Peremennye Zvezdy Prilozhenie supplement (PZP).
Both were observed by the All Sky Automated Survey (ASAS) in the V band.
Another light curve for EM Cet was observed via the Transiting Exoplanet
Satellite (TESS). From the TESS observations we determined 4 new minima
times. Orbital and physical parameters were determined. The analysis showed
that the two targets confirming the concept of orbital circularization theories
that stars with lower eccentricities are with later spectral types. A comparison
between the results obtained from the two light curves of ASAS and TESS for
EM Cet has been investigated.

Key words: detached binaries – EMCet – ELCen

1. Introduction

The study of apsidal motion of detached Eccentric Eclipsing Binary stars (EEBs)
is important because it provides information about the internal structure of the
stars. Apsidal motion refers to the rotation of the line connecting the two stars
in an elliptical orbit. By measuring the rate of apsidal motion, astronomers
can determine the structure constants k2 specifying the density distribution in
each of the components. Apsidal motion in binary star systems can be caused
by several factors: (i) mutual tidal deformation of the components due to the
gravitational interaction between them, affecting their orbits; (ii) deformation
of the components due to the axial rotation of the stars which can also cause
shape variations, (iii) the relativistic effects that introduces subtle corrections to
the orbital dynamics, impacting the apsidal motion, and (iv) the compactness
of triples that was investigated by Rappaport et al. (2024) can lead to interest-
ing and important dynamical interactions, including so-called dynamical delays,
driven apsidal motion in the inner binary (see also, e.g., Rappaport et al., 2023;
Borkovits et al., 2015; Borkovits & Mitnyan, 2023). Hence, to investigate and
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probe the internal structure of the stars many astronomers have focused their
attention on studying detached eclipsing binary systems whose light curves ex-
hibit a secondary minimum phase shift out of the value 0.5.

Researchers have difficulty observing detached systems with ordinary tele-
scopes, because their orbital periods are long, making it difficult to cover the
entire light curve compared to binaries with short periods. Fortunately, mod-
ern robotic space telescopes and significant advances in instrumentation over the
past three decades have enabled several large-scale optical surveys to report tens
of thousands of new eclipsing binaries in our Galaxy and other nearby galaxies
(Kim et al., 2018). Consequently, several catalogues have been formed by several
authors, especially for detached binary stars showing apside line rotation, such
as Petrova & Orlov, 1999; Hegedüs et al., 2005; Bulut & Demircan, 2007; Prša
et al., 2011; Slawson et al., 2011; Kirk et al., 2016; and Kim et al., 2018. For
a preferred summary view of these catalogs, see Kjurkchieva et al. (2017). We
have used in the present analysis light curves from the ASA-Survey (Pojmanski,
1997) and the TESS (Ricker et al., 2015) mission. Pojmanski (2002) explained
the description of the All-Sky Automated Survey that started at the beginning
of 1996. It is a long-term project that provides long-baseline light curves for
sources brighter than V=15 mag across the whole sky. The Transiting Exo-
planet Survey Satellite (TESS), launched by NASA in 2018, is a space telescope
designed to discover thousands of exoplanets orbiting the brightest dwarf stars.
It has also produced high-quality light curves with a baseline of at least 27 days,
eventually for most of the sky. The combination of ASAS and TESS light curves
probes both long- and short-term variability in great detail, especially towards
the TESS Continuous Viewing Zones (CVZ) at the ecliptic poles.

2. Source of data

We selected light curves for two detached systems, EM Cet and EL Cen, from the
Peremennye Zvezdy Prilozhenie Supplement (Khruslov, 2012); and Kazarovets
& Pastukhova (2017) that are characterized by an apparent secondary minimum
phase shift apart of 0.5. However, Nedorošč́ık et al., 2014; presented an effective
way to quickly classify eclipsing binaries from the ASAS data via performing
the Fourier decomposition of the phase light curves. They used the relations
between the Fourier coefficients to infer principal properties of eclipsing binaries
and, hence, the systems with eccentric orbits could be distinguished. The light
curves of both systems were observed by the ASAS. In the analysis we also
included another light curve for EM Cet from the TESS observations which is
available with the 120-second cadence.

Table 1 displays the magnitudes in different bands, the color index and the
effective temperatures of both stars. The next two sub-sections 2.1 and 2.2 give
short accounts about both targets.
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Table 1. Magnitudes, colors and effective temperatures of the two targets.

EM Cet EL Cen
J 08.6851 11.3511

H 08.4261 11.2371

K 08.4001 11.1711

B 10.233 12.672

V 09.643 12.272

J-H 0.259 0.114
B-V 0.590 0.310
Teff. 63815 68414

1Cutri et al., 2003, -yCat. 2246
2Høg et al., 2000
3Watson et al., 2006= VSX. 2005
4Bai et al., 2019
5Zhang et al., 2023

2.1. EM Cet

The star EM Cet (α2000 = 03h 22m 37.s91, δ2000 = −0◦ 31′ 42.′′5) was discovered
by the Hipparcos mission and listed under serial number HIP 15728 (ESA, 1997)
with a primary minimum 2448510.d883 and an orbital period, P = 13.d2714 day.
Subsequently, it was named in the GCVS as EM Cet by Kazarovets et al. (1999)
who classified the star as an eclipsing Algol (EA:). Kazarovets & Pastukhova
(2017) selected the star from the ASAS photometric catalogue (ASAS 032238-
0031.7) and reported F8 as a spectral type and gave a new period P = 10d.5240
instead of the false period, P = 13.d2714, given in the Hipparcos and Tycho
Catalogues (ESA, 1997). They gave the line elements:

HJDMinI = 24 54783.d709 + 10.d5240E (1)

Another light curve has been observed via TESS mission with serial number
TIC 279097963, magnitude (Tmag) = 9.1854, and effective temperature Teff =
6381.06 K with the ephemeris:

HJDMinI = 24 58414.d498384 + 10.d5242227E. (2)

On the other side, two ephemerids were given for both primary and secondary
minimum in the online O-C Gateway cataloge as:

HJDMinI = 24 48510.d883 + 10.d5141E, (3)

HJDMinII = 24 48517.d296 + 10.d5141E. (4)

The times of minimum light listed in Table 2 were taken from the online O-C
gateway website (Paschke & Brat, 2006). Besides, we deduced 4 new minima
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times from the TESS observations by using the AVE program that depends on
Barbera (1996) method. The O-C residuals were calculated using equation (2),
and plotted in Fig. 1.

Figure 1. The O-C Diagram of EM Cet, dots stand for primary minima, an open

circle for the secondary one.

Table 2. Time of minima for EM Cet.

HJD (+2400000) Error O-C Type Method Ref.
48510.8830: -0.32182 P pe V [1]
54783.7090 0.06745 P pe V [1]
58414.498818 0.000029 0.00043 P CCD I pw
58425.022845 0.000041 0.00024 P CCD I pw
58431.391731 0.000077 1.10701 S CCD I pw
58435.546786 0.000030 -0.00004 P CCD I pw
59929.954 -0.03245 P Ic [1]

Ref: [1] Paschke & Brat (2006). pw: present work (from TESS observations).

2.2. EL Cen

The star EL Cen (α2000 = 13h 30m 25.s2, δ2000 = −56◦ 54′ 52.′′2; TIC 68295752;
ASAS 133025-5654.9) was discovered as an eclipsing variable by Hoffleit (1930)
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taking Harvard serial number HV 4757. It was discovered while surveying the
southern Milky Way by examining the Modified Forster-plates (MF), which
was developed by the German astronomer Paul Forster to be more sensitive to
shorter wavelengths of light than the traditional photographic plates, and taken
by a refracting 10-inch Metcalf telescope located at the Boyden Observatory in
South Africa.

An earlier version of GCVS classified the system as an eclipsing variable
star without specifying its light elements. Khruslov (2012) confirmed its eclips-
ing nature according to the Automated Survey (ASAS-3) data and recorded
secondary minimum phase shift φ2 at 0.312 and minima differ in duration: DI
= 0.012 P and DII = 0.022 P . He also gave the light elements:

Figure 2. The O-C Diagram of EL Cen, filled circles stand for primary minima, open

circles for secondary ones.

HJD(Min.I) = 24 53525.d600 + 21.d8677E. (5)

The eclipse times of minima are listed in Table 3 from the O-C gateway
catalog with the primary and secondary light elements:

HJD(Min.I) = 24 53525.d600 + 21.d8677E, (6)

HJD(Min.II) = 24 53532.d423 + 21.d8677E. (7)

EL Cen is also included in the Galactic eccentric eclipsing binary stars cat-
alogue which is based on the eclipse timing diagram (Kim et al., 2018), with
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Table 3. Times of minima for EL Cen.

HJD (+2400000) O-C Type Method Ref.
52782.1040 2.03575 P pe V [1]
52810.8320 -2.037725 S pe V [1]
53525.6000 2.03165 P pe V [2]
53532.4230 -2.079175 S pe V [2]
54341.6200 -1.985225 S pe V [1]
54422.1420 0 P pe V [1]
54684.5480 1.9942 P pe V [3]
55347.5338 -1.983325 S pe V [1]
57446.8630 -1.948525 S - [3]

Ref: [1] Kim et al. (2018). [2] Khruslov (2012). [3] Paschke & Brat (2006).

maximum magV = 12.3, and secondary minimum phase shift at 0.317. They
gave the light elements:

HJD(Min.I) = 24 54420.d142 + 21.d86765E. (8)

The O-C residual diagram is shown in Fig. 2, where the residuals were cal-
culated using the ephemeris of equation (8).

3. Light curve analysis

To model the light curves, we used the package PHOEBE v0.31 (Prša & Zwitter,
2005). The light curves’ morphology shows constant out-of-eclipse parts and
a secondary minimum phase shift value out of 0.5 for the two targets, then
we used the mode Detached. To proceed with the use of PHOEBE one has
to prepare some input initial parameters. For EM Cet and EL Cen the light
curves’ morphology shows difference between the depths of both eclipses, so the
temperatures and radii of the primary and secondary components have to be
different. Hence, the task is to set the temperature of the primary component
as a constant value and to fit the temperature of the secondary one (Zasche,
2016).

The ASAS light curves of the two systems were observed in the V-band,
while the light curve of TESS was observed in the 8100 Å I central band (=7865
Å); we have chosen the Cousins I filter in PHOEBE. We used T1eff = 6381
K (Zhang et al., 2023) for EM Cet and 6841 K for EL Cen from Bai et al.
(2019). Given some other parameters, such as gravity-darkening and bolometric
albedo, one can begin to model the two systems. The gravity darkening can be
found following Lucy (1967) and Ruciński (1973). For both systems, assuming
convective envelope components (T1 < 7200 K), the gravity-darkening g1 =
g2 = 0.32 and the primary star albedo A1 = A2 = 0.5 (Zasche, 2016).
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Figure 3. The qph −
∑

(O − C)2 relation

Figure 4. Top: The ASAS light curve of EM Cet and its fit. Bottom: The correspond-

ing residuals (shifted vertically to save space).

Light curves of detached eccentric eclipsing binaries are mostly characterized
by deviations of their secondary minimum from the phase 0.5. Hence, to proceed
in solving the light curves, without a waste of time, one has to deduce, not guess,
the initial values of both the eccentricity, eo, and the longitude of periastron,
ωo. We follow the method of Kjurkchieva & Vasileva (2015a) by solving the two
equations:

eo cosωo =
1

2
· π[(φ2 − φ1)− 0.5], (9)
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Figure 5. Top: The TESS light curve of EM Cet and its fit. Bottom: The correspond-

ing residuals (shifted vertically to save space).

Figure 6. Top: The ASAS light curve of EL Cen and its fit. Bottom: The correspond-

ing residuals (moved vertically to save space).

eo sinωo = (W2 −W1)/(W2 +W1), (10)

where W1 and W2 are the measured widths of the primary and secondary min-
ima in phase unit; φ2 is the phase of the secondary minimum, while φ1 = 0.
Equations (9) and (10) are the approximate equations 9.25 and 9.37 given by
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Kopal (1978). All these values are shown in Table 4. Both eo and ωo were used
as raw parameters for PHOEBE. Also, we followed a q-search procedure imple-
mented by several authors (e.g., Djurašević et al. (2016); Awadalla et al. (2016);
El-Sadek et al. (2019)) to obtain the photometric mass ratio, qph. This can be
performed by constructing the relation between the sum of weight squares de-
viation (O − C)2 and q for both systems (Fig. 2). We obtained qph = 0.63 for
EM Cet and 0.82 for EL Cen .

Table 4. The measured width of LC minimum, phase of sec. minimum and the esti-

mated initial eo and ωo

W∗

1 W∗

2 φ∗

2 eo ωo (Rad.)
EM CetASAS 0.027 0.0420 0.6080 0.2758 0.9080
EM CetTESS 0.033 0.0440 0.6074 0.2208 0.7012

EL CenASAS 0.010 0.0216 0.3120 0.4927 0.9270
∗ in phase unit.

We put the deduced effective temperature, T1eff., as a constant parameter,
and the estimated qph, eo and ωo as initial values. Then we proceed to the
analysis by adjusting the inclination i, T2, surface potential of the primary and
secondary components, e, ω and phase shift. We proceed step by step until the
solution converges giving the best fit with the lowest value of χ2 (χ2 = 0.00528
for EM CetASAS , 0.0053 for EM CetTESS , and 0.0217 for EL Cen). The obtained
solution parameters, including the standard errors, are shown in Table 5. In the
first column of the table, the suffix 1 stands for the primary component and 2
for the secondary one. Synthetic light curves computed with these parameters
are plotted as solid lines in Figs. 4, 5 and 6, with residuals at the bottom of
each figure.

4. Discussion and Results

When using tables by Cox (2000), the temperatures T1,2 (6381 & 6173(43) K)
of EM CetASAS correspond to the spectral types F7 + G7; and T1,2 (6381 &
5899(17) K) of EM CetTESS correspond to the spectral types F7 + G3. Also,
for EL Cen, T1,2 (6841 & 6613(162) K) correspond to F3 + F 5 (see, Table 6).
This result is expected considering that both stars are mainly solar-type stars.
The orbital inclinations of the two targets are around 87◦ which is quite close
to 90◦. This is normally expected for eclipsing binaries with orbital periods over
eight days (Kjurkchieva & Vasileva, 2015a). The light curve morphology of both
systems shows partial eclipses (see also Figs. 7 & 8).
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Table 5. Orbital and physical parameters of EM Cet and EL Cen.

Parameters EM CetASAS EM CetTESS EL Cen

Wavelength 5500 Å 8100 Å I central 5500 Å
band =7865 Å

HJD (2400000+) 54783.709 58414.498384 53525.6

Orbit. Per. (d) 10.d524 10.d5242227 21.d8677(4417)
Eccentricity (e) 0.2987(63) 0.30000(11) 0.3527(52)
ω (rad) 0.9958(149) 1.006(19) 2.538(19)
T1eff. (K) 6381 (fixed) 6381 (fixed) 6841 (fixed)
T2eff. (K) 6173(43) 5913(17) 6613(162)
Phase shift 0.0444(21) 0.04251(8) -0.08009(92)
Orb. incl. (i) 87◦.19± 0.81 87◦.082± 0.002 87◦.10± 0.09
Mass ratio (q) 0.7323(136) 0.7146(3) 0.815(42)
l1/(l1 + l2) 0.6361(132) 0.7151(3) 0.6441(18)
l2/(l1 + l2) 0.3638(132) 0.2849(3) 0.3559(18)
Frac. rad. r∗1 0.0632 0.0703 0.0281
Frac. rad. r∗2 0.0452 0.0517 0.0237
Limb dark. x1 0.537 0.349 0.48(25)
Limb dark. x2 0.562 0.385 0.502(225)
Surf. pot. Ω1 17.975(340) 16.049(4) 14.00(32)
Surf. pot. Ω2 16.752(335) 16.682(4) 13.00(37)
Fillout factor f1 -0.812 -0.789 -0.6028
Fillout factor f2 -0.798 -0.797 -0.5727
Albedo ALB1 0.5 0.5 0.5
Albedo ALB2 0.5 0.5 0.5
Grav. bright. g1 0.32 0.32 0.32
Grav. bright. g2 0.32 0.32 0.32
χ2 0.0053 0.0053 0.027

∗ Calculated following Ivanov et al. (2010).

In our discussion we shall consider the obtained parameter values of
EMCetTESS not EMCetASAS to avoid any confusion for the reader. We chose
the obtained parameter values of the TESS light curve rather than those of
ASAS for two reasons. The first is due to the good quality of the TESS light
curve compared to the ASAS light curve. The second is that the light curve by
ASAS was observed during 8.8 years, while it was 27 days by the TESS. There
are no radius parameters to fit in the PHOEBE code, but the radii of the com-
ponents are stocked in the parameters like ”PHSV” and ”PCSV” (or POT1,
POT2- primary and secondary surface potentials) (Zasche, 2016). However, we
have obtained roughly the fractional radii from the empirical relations, assuming
MS-stars given by Ivanov et al. (2010). We found r1 = 0.07032 & r2 = 0.0517
for EM CetTESS and r1 = 0.0281 & r2 = 0.0237 for EL Cen. These values do
not provide error values, however, Prša et al. (2011) estimated that 90% of the
sample of detached and semi-detached EBs had a corresponding error smaller
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than 10% (Kjurkchieva & Vasileva, 2015b). We have attempted to study the pe-
riod variation due to apsidal motion by analyzing the O −C plot but we could
not find an acceptable solution for the lack of the observed times of minima. For
the same reason Kim et al. (2018) did not include the apsidal motion parame-
ters of EL Cen within the eclipse timing diagram in their extensive catalogue
of EEBs. The absolute physical parameters of the components were calculated
using the empirical relations adopted by Harmanec (1988) and listed in Table 6.
The geometrical configurations for both systems and the model solution at 0.0,
0.25, 0.50 and 0.75 orbital phases, using the Binary Maker Code (ver. 3.0), are
illustrated in Figures 7 & 8. The geometrical configurations at the secondary
minimum phase, φ2, at 0.6 (for EM Cet) and 0.31 (for EL Cen) are also shown
at the lower panel of each figure. The partial eclipses are clearly shown.

Table 6. Orbital and physical parameters of EM Cet and EL Cen.

Star Comp. M R T L Mbol. Log g Sp.
Name (M⊙) (R⊙) (K) (L⊙) type

EM CetASAS Pri. 1.271 1.347 6381 2.783 3.652 4.281 F7
(8) (7) (74) (29) (2)

Sec. 0.971 1.051 6173 0.913 4.876 4.378 G7
(8) (8) (43) (31) (04) (3)

EM CetTESS Pri. 1.271 1.354 6381 2.783 3.622 4.281 F7
(8) (3) (74) (29) (3)

Sec. 1.088 1.170 5899 1.415 4.360 4.338 G3
(8) (8) (17) (44) (33) (3)

EL Cen Pri. 1.438 1.496 6841 4.67 3.08 4.244 F3
(8) (7) (11) (3) (2)

Sec. 1.365 1.432 6613 3.75 3.33 4.260 F5
(8) (7) (162) (09) (3) (2)

The analysis shows that the orbital eccentricity of EM Cet is 0.3(0) with
Sp-Type F7+G3 while for EL Cen, e = 0.3527(52) with Sp-Type F3+F5, which
matches Zahn (1977) and Tassoul (1988) theories of circularization, in which
eccentric eclipsing binaries tending to circularize their orbits due to tidal in-
teraction between their components. Mayer & Hanna (1991) emphasized the
dependency of eccentricity evolution, towards orbital circularity, upon spectral
type and the age of the binary. The obtained eccentricity and spectral type for
both systems are matching the (e − Sp.type) diagram given by Hanna (1993)
and Hanna et al. (1998).
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Figure 7. Top panel: Roche Lobe configuration. Bottom: The description of the model

solution at different orbital phases for EM Cet.
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Figure 8. Top panel: Roche Lobe configuration. Bottom: The description of the model

solution at different orbital phases for EL Cen.
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5. Conclusion

The main results from the analysis of the two light curves are as follow:
(1) We determined the orbital elements and stellar parameters for the two de-
tached systems EM Cet and EL Cen.
(2) The analysis show that EM CetTESS is of late spectral type, F7 + G3, where
one can expect magnetic activity or star spots due to its convective envelope,
which is a common characteristic of stars like our sun. However, we did not
notice any considerable smooth or even abrupt variation in the out of eclipse
range of the light curve.
(3) The morphology of the light curves clearly shows that both systems are
detached eccentric eclipsing binaries and the analysis verified significant orbital
eccentricity 0.3(0) for EM Cet and 0.3527(52) for EL Cen. Also, the obtained
small fractional radii are expected values for detached systems having long or-
bital periods.
(4) The analysis of the light curves shows a relatively high eccentricity, e =
0.3527(52), for the early type star EL Cen (Sp.type F3 + F5) rather than EM
Cet of the later spectral type (F7 + G3) which has a lower eccentricity. This
is consistent with tidal interaction theories that postulate the evolution of the
orbit towards circularity (Mayer & Hanna, 1991).
(5) The analysis shows a high orbital inclination of both stars 87◦.06 ± 0◦.05
and 87◦.10± 0◦.09 for EM Cet and EL Cen, respectively, which is expected for
such long period binaries (Kjurkchieva & Vasileva, 2015a).
(6) On comparing the two sets of parameters obtained from the analysis of the
two light curves EM CetASAS & EM CetTESS , one can notice that the differ-
ences are in the range of the estimated errors by PHOEBE for most parameters
such as the eccentricity, the longitude of periastron, the inclination, the mass
ratio and the phase shift. All are having almost the same values, while there is
a considerable difference in T2eff. by about 270 K. This may be due to the the
scatter seen in the ASAS data. Also, the limb darkening coefficients x1, x2 for
the TESS light curve are smaller by about 30% than those of the ASAS light
curve. However, it is preferable to consider the results of the TESS light curve
since its profile is better than the scattered light curve of ASAS, and it was
observed over a shorter interval of time.
Due to the absence of spectroscopic observations, we consider the present so-
lution as a preliminary one. Spectroscopic observations are indeed necessary
for accurate determination of the absolute parameters. In addition, we recom-
mend observing times of minima of both systems to be able to study the period
variability and the apsidal motion.
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Abstract. In this paper, we carried out photometric and kinematic study of
two poorly studied open clusters NGC 7031 and NGC 7086 utilizing the optical
wavelength of Gaia DR3. We identified 613 and 226 candidates for respective
clusters as highly probable astrometric members. Fitting King’s profile within
RDPs, we estimate both core and limiting radii. For each cluster, we construct
CMDs and fit them with suitable isochrones with metallicities (Z = 0.01189
± 0.00023 & 0.01121 ± 0.00025) and different ages (8.468 ± 0.007 & 8.617
± 0.021; log yr-1), therefore, the heliocentric distances are 701 ± 26 & 942
± 31 pc for NGC 7031 and NGC 7086, respectively. Moreover, the collective
mass (MC) in solar mass units may be deduced with MLR of 1072 ± 33 &
598 ± 25 and LF concluded that the average absolute (MG) magnitudes are
7.51 ± 0.36 & 6.54 ± 0.39 for respective clusters. The overall mass function
reflects the slopes (α) for Salpeter’s value (2.35) within the uncertainty, i.e.,
αNGC 7031 = 2.73 ± 0.25 & αNGC 7086 = 2.67 ± 0.32.

The present study and the dynamical analysis for different evolving times
demonstrate that the clusters are dynamically relaxed, where the dynamical
evolution parameter τ ≫ 1. According to a kinematical analysis, we have
obtained that the coherent convergent point (Ao, Do) is (-83o.99 ± 0o.11, -
24o.02 ± 0o.20; NGC 7031) & (-80o.69 ± 0o.11, -17o.51 ± 0o.24; NGC 7086).
Finally, we have computed their linear separation distance to be about 55.08
± 7.42 pc, which reflects that the clusters are not binary and/or pair clusters.

Key words: open clusters: NGC 7031 and 7086 – astrometric – color magni-
tude diagrams CMDs – photometric – kinematics
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1. Introduction

Open star clusters (OCs) are uniform stellar systems with abundant gas and
dust that originated along the Galactic plane under identical physical scenar-
ios. They are found in varied ranges of stellar mass but contain tens to a few
thousand stars spread across comparable distances, ages, and initial chemical
compositions. As a result, each of these systems makes an excellent laboratory
for researching the creation and evolution of stars, and it may be utilized to test
and constrain theories regarding stellar evolution (Joshi et al., 2016). In addi-
tion to offering details on the physics, motion, and development of stars, OCs
also show the Milky Way’s disk structure (Kharchenko et al., 2013). Because
of their ability to accurately determine the amount of interstellar reddening to-
wards them, their chemical abundances, distances, and ages, OCs are a great
tool for studying the structural, dynamic, and chemical evolution of the galaxy.
This is demonstrated by the ability to create two-color diagrams (TCDs) and
color-magnitude diagrams (CMDs) from UBV photometric data, and then com-
pare these diagrams with stellar models and isochrones.

According to earlier studies, the percentage of OCs in gravitationally inter-
acting pairs1 is not insignificant in this situation (Angelo et al., 2022). At a
distance of 50–60 kpc, the Magellanic Clouds (MCs) make it simple to iden-
tify binary clusters (Hatzidimitriou & Bhatia, 1990). It appears from studies of
the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) that
about 10% of clusters are binary and/or pair clusters (Pietrzynski & Udalski,
2000) far from each other appearing to be close due to a viewing angle (Con-
rad et al., 2017). Some research (Subramaniam et al., 1995) has found that the
Milky Way’s binary cluster percent age is less than this (∼ 8 %; 18 probable
pairs) and stated that a cluster pair is termed a binary cluster if the separation
is ≤ 20 pc.

Also, de La Fuente Marcos & de La Fuente Marcos (2009) used information
from the Dias et al. (2002) and WEBDA2 (Netopil et al., 2012) catalogs for a
volume-limited sample of OCs that were situated at the solar circle. They used
the physical (as opposed to projected) separation between pairs of OCs as their
primary selection criterion, presuming that two objects are part of an interacting
system when their separation is less than three times the average tidal radius
(rt) for clusters in the Milky Way disc ∼10 pc (Binney & Tremaine, 2008). Based
on the results of their process, they concluded that, like what has been proposed
for the Magellanic Clouds (e.g., Bhatia & Hatzidimitriou (1988); Hatzidimitriou
& Bhatia (1990); Pietrzynski & Udalski (2000); Dieball et al. (2002)), at least
∼ 10 % of all OCs seem to be involved in some kind of interaction with another
cluster.

1The term ”pairs” is used simply to describe either unbound or gravitationally bound groups of
interacting OCs or even random alignments in the sky. The term ”binary cluster” is specifically
used to refer to clusters of two OCs that are gravitationally bonded.
2https://webda.physics.muni.cz/
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Table 1. Astrophysical parameters of NGC 7031 and NGC 7086, which were derived from the literature; (1)Dias et al. (2002),

(2)Svolopoulos (1961), (3)Hoag et al. (1961), (4)Lindoff (1968), (5)Hassan & Barbon (1973), (6)Kopchev & Petrov (2008), (7)Yontan

et al. (2019), (8)Hassan (1967), (9)Rosvick & Robb (2006), (10)Hunt & Reffert (2024).

α2000 δ2000 l b E(B − V ) m−M Distance log t dGaia µ⋆
α µδ Ref.

[h m s] [◦ ′ ′′] [◦] [◦] [mag] [mag] [pc] [yr-1] [pc] [mas yr−1] [mas yr−1]

Cluster: NGC 7031

21 07 12.00 50 52 30 91.33 2.31 0.854 - 900 8.138 - -2.87±0.20 -4.77±0.11 (1)
1.03 12.60 760 - - - - (2)

21 08.20 0 50 42 0.0 91.62 2.04 0.85 12.41 900 8.14 - - - (3)
- 12.25 910 7.75 - - - (4)

21 05.70 0.0 50 38 0.0 91.03 2.30 0.71-0.84 11.45-11.70 730-686 8.68 - - - (5)
1.05±0.05 9.60±0.20 831±72 8.35 - - - (6)
0.93±0.08 13.30±0.25 1212±146 7.81±0.03 1414±81 -1.286±0.081 -4.144±0.076 (7)

21 07 12.76 50 51 56.20 91.65 2.24 0.973 10.756 1416 7.562 - -1.243±0.008 -4.281±0.010 (10)

Cluster: NGC 7086

21 30 27.0 51 36 0.0 94.41 0.22 0.807 - 1298 8.142 - 0.98±1.56 0.22±1.44 (1)
21 29.40 0 51 27 0.0 94.48 0.24 0.69 12.40 1170 8.87 - - - (8)

- 12.50 1205 7.93 - - - (4)
21 30 30 51 36 0.0 94.40 0.20 0.83±0.02 13.40±0.30 1500 8.00 - - - (9)

0.75±0.05 9.90±0.20 955±84 8.25±0.06 - - - (6)
0.75±0.07 13.37±0.23 1618±182 8.18±0.07 1684±140 -1.642±0.086 -1.644±0.076 (7)

21 30 30.66 51 35 34.10 94.76 0.19 0.991 11.129 1681 8.183 - -1.653±0.005 -1.664±0.004 (10)
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In the present work, we carried out the extensive astrometric, photometric,
and kinematic analysis of a poorly studied pair and/or binary clusters NGC 7031
(known as Collinder 430, FSR 294, MWSC 3466, NGC 7031, OCL 210, or Theia
2164) and NGC 7086 (known as Collinder 437, FSR 309, MWSC 3520, NGC
7086, OCL 214, or Theia 2737) open clusters (Hunt & Reffert, 2023), which are
located very near to the disc of the Milky Way (MW) according to Gaia Mission
Collaborations data release 3 Gaia Collaboration (2022). Table 1 presents the
the fundamental and astrophysical parameters of NGC 7031 and NGC 7086,
which are derived from the literature like Dias et al. (2002), Svolopoulos (1961),
Hoag et al. (1961), Lindoff (1968), Hassan & Barbon (1973), Kopchev & Petrov
(2008), Yontan et al. (2019), Hassan (1967), Rosvick & Robb (2006), and Hunt
& Reffert (2024).

In what follows, Section 2 describes the Gaia DR3 data we used. The struc-
tural analysis of the OCs is given in Section 3 followed by the discussion and
selection of the probable members to construct CMDs in Section 4 with various
photometric parameters. Luminosity, mass functions, and mass segregation are
described in Section 5. Section 6 deals with evolving times and escape velocity.
The ellipsoidal motion and the kinematical structure are presented in Section
7. We close finally with conclusions in Section 8.

2. Data sample

In this study, we have extracted our target with the aid of the most recent
Gaia mission collaborations data release 3 of Gaia Collaboration (2022) to get
the astrometric data. A new era in astronomy began with the launch of the
European Space Agency (ESA) mission Gaia as it contains the five-parameter
astrometry for approximately 1.8 billion sources along their position in the sky
(α, δ), parallaxes (π; mas) and the right ascension and declination components
of the proper motion (µ⋆

α, µδ; mas yr-1)3 with limiting magnitude of G = 21
mag. With uncertainties in the respective proper motion, components are up
to 0.02 – 0.03 mas yr-1 (at G < 15 mag), 0.07 mas yr-1 (at G ∼ 17 mag), 0.50
mas yr-1 (at G ∼ 20 mag) and 1.40 mas yr-1 (at G = 21). The uncertainties in
the parallax values are ∼ 0.02 – 0.03 mas for sources with G < 15 mag, ∼ 0.07
mas for sources with G = 17 mag, ∼ 0.50 mas at G = 20 mag, and ∼ 1.30 mas
at G = 21. The DR3 is complemented with data of the radial velocity (Vr) for
about 7 million stars from DR2 Gaia Collaboration et al. (2021). The source list
has a slight change to DR2 with some notable changes. The significant advance
of DR3 over DR2 is the large improvement in the accuracy of the astrometric
parameters; a factor of 2.00 in the proper motion accuracy and a factor of about
1.50 in the parallax accuracy. Astrometric errors were suppressed by 30 – 40%
for the parallax and by a factor of 2.50 for the proper motion.

3(µ⋆
α = µα cos δ)
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In our calculations, the downloaded data was taken from the Gaia DR3 cata-
log of Gaia Collaboration (2022). Although the apparent diameters of these two
open clusters are about 14.0 and 12.0 arcmin, respectively, we need to download
the data diameter of both by about 20 arcmin to reach the background field
stars. Therefore, we get from the Gaia DR3 catalog a complete worksheet data
including the angular distance from the center, right ascension, and declination
for G mag for NGC 7031 and NGC 7086.

3. Structural analysis of the open clusters

The initial phase of analyzing a cluster involves determining its structural at-
tributes, such as the central coordinates and the outermost boundary. Despite
some catalogs providing this information, the accuracy of the listed centers and
sizes is not always reliable. For the analysis of structural and essential character-
istics in this research, we consistently employ the ASteCA software suite. This
package has been utilized in the examination of numerous clusters in previous
studies and has yielded outstanding outcomes, e.g. Perren et al. (2020).

3.1. Determination of the new center of the clusters

In contrast to globular clusters where the center is typically clear to the naked
eye, the core of an OC might not be as easily discernible. The Automated
Stellar Cluster Analysis (ASteCA) code of Perren et al. (2015) employs a widely
used technique to ascertain an OC’s central coordinates by identifying the point
with the highest spatial density. This is achieved by fitting a two-dimensional
Gaussian kernel density estimator (KDE) to the cluster’s spatial layout. What
sets ASteCA apart from similar methods is its ability to operate without preset
initial values, though they can be provided for semi-automatic operation. The
tool ensures consistent convergence. This approach is less dependent on the
binning of the area because it determines the KDE’s bandwidth using Scotts
rule Scott (1992), a recognized standard. It also simultaneously calculates the
maximum density estimate in both spatial dimensions, reducing the impact
that densely packed areas might have on pinpointing the central coordinates.
Moreover, the process is adaptable to various coordinate systems and is equally
effective with data expressed in pixels or degrees.

Figure 1 represents the re-estimated center using the ASteCA method (as
well as the images of the clusters taken from the STScI Digitized Sky Survey4).
According to our analysis, the new centers of NGC 7031 are less by about 0o.1564
in right ascension and exceeded by about 0o.0013 in declination, and in the same
manner for NGC 7086 our obtained right ascension is less by about 0o.0153 in
right ascension and exceed with 0o.083 in declination as compared with those
obtained with Dias et al. (2002) and WEBDA. Table 2 reports the updated

4https://archive.stsci.edu/cgi-bin/dss_form
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centers of the clusters in the equatorial (α, δ) and Galactic (l, b) coordinate
systems. Figure 2 displays in three photometric bands G, GBP, and GRP the
uncertainty in photometric magnitudes 0.05 for G ≤ 21 mag.

Figure 1. The images (left panel) and the contour maps (right panel) show the centers

according to the Kernel density estimation technique (KDE) applied by ASteCa of both

NGC 7031 (top) and NGC 7086 (bottom).

3.2. Radial stellar surface density and cluster radii

To investigate the inner structural parameters of NGC 7031 and NGC 7086, we
analyze the radial density profiles (RDP). The RDP is often calculated by divid-
ing the number of stars that lie inside each ring by its area, and then creating
concentric circular rings around the designated cluster center with increasing
radius values, i.e., the observable regions of each cluster were divided into many
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Figure 2. Photometric uncertainties in Gaia bands (G, GBP , and GRP ) with G mag-

nitudes which are used to clean the cluster field stars by rejection stars (the green

x symbol) with uncertainties more than 0.02 in G mag and 0.05 in color-magnitude

GBP -GRP , respectively.

Table 2. Our new center estimate of NGC 7031 and NGC 7086.

Coordinates NGC 7031 NGC 7086

α 21h 06m 34s.46 21h 30m 23s.33

δ 50d 52m 35s.08 51h 40m 59s.20
lo 91o.5932 94o.8009
bo 2o.3251 0o.2690

concentric rings that centered around the cluster center. The number density
(ri) in the ith zone may be found using the formula (ri=NiAi), where (Ni) is
the number of stars and (Ai) is the ith zone’s area. First, we adopted the new
central coordinates of the clusters as given in Table 2 and downloaded new row
data with 14.00 and 12.00 arcmin for both clusters respectively with Gaia DR3
and then, following Perren et al. (2015), generated concentric square rings using
an underlying 2D histogram or grid in the observed frame’s positional space.
This positional histogram’s bin width is equal to 1% of the spatial dimension
that covers the smallest range in the observed frame. Therefore, for each cluster,
the fitted RDP could be utilized with King’s profile (King, 1962) equation,

ρ(r) = fbg +
fo

1 + (r/rc)
2
, (1)

where fo is the central surface density (i.e., maximum density), fbg is the
background surface density, and rc is the core radius (distance from the obtained
center to the point at which the value of ρ(r) becomes half of the central density
fo). As seen in Figure 3, we created two RDPs using King’s model for both
clusters, which was fitted using Equation (1). Table 3 lists our obtained results
with RDPs of NGC 7031 and NGC 7086.
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Comparing our results of fo and fbg with those of Yontan et al. (2019), we
found a large difference between our and their results in central and background
densities in both clusters. We claim that their results are not reliable because
the values of fo are less than fbg, which is not consistent with the King model;
rather than their results depend on Gaia DR2, which clear from Figure 3 of
Yontan et al. (2019). So, we are satisfied with our results from RDP (Figure 3)
using the recent data of Gaia DR3, which is consistent with the King model (i.e.,
fo > fbg). Therefore, their error in estimating the King model fitting parameters
(i.e., fo, fbg, and rc) on both clusters may reflect on core, limiting, and tidal
radii.

The limiting radius (rcl; arcmin) in expansion may be defined as the point
into which the gravitational pull from the Galaxy center as well as the gravita-
tional acceleration from the cluster center (von Hoerner, 1957). rcl was calcu-
lated by comparing ρ(r) to a background density level ρb (i.e., ρb = fbg +3σbg),
where the uncertainty of fbg is σbg. The following formula provides the value of
rcl (Bukowiecki et al., 2011).

rcl = rc

√

fo
3 σbg

− 1. (2)

According to Table 3, we found a difference in numerical values of the core
radius (rc) for both clusters as compared with those obtained by Hunt & Reffert
(2024), which may account for the difference in the distance and the number of
members.

3.3. Tidal radii

According to von Hoerner (1957), the tidal radius is the distance from the
cluster center at which the gravitational acceleration created by the cluster
equals the tidal acceleration caused by the parent galaxy. Jeffries et al. (2001)
have introduced a relation between the tidal radius (rt; pc) and the total mass
(MC ; M⊙) as (see section 5)

rt = 1.46 3

√

MC . (3)

Our estimated values of tidal radii (pc) for both clusters NGC 7031 and
NGC 7086 are 14.94 ± 0.26 and 12.30 ± 0.29, respectively.

Empirically, the limiting radius lags between 2 − 7 times the core radius.
Therefore, we obtained values of 10.04 and 3.91 arcmin for NGC 7031 and
NGC 7086, respectively. On the other hand, other inner structural parameters
may be deduced for OCs. First, the concentration parameter (C = rclrc) King
(1966) defined the C as the ratio of the cluster limiting and core radii and
can be indicated by the concentration of the cluster’s center. Santos-Silva &
Gregorio-Hetem (2012) reversed King’s definition of the C parameter from King
(1966) and expect that young clusters will have low C values since many of their
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Figure 3. The RDPs of both NGC 7031 (top) and NGC 7086 (bottom). The dashed

green lines were applied with the King’s density distribution model, the horizontal

dashed lines denote the background field density (fbg; stars arcmin-1). The vertical

dotted green lines, vertical solid red lines, and vertical solid green lines indicate the

cluster core (rc), limiting (rcl), and tidal (rt) radii (in arcmin), respectively.

members are still concentrated in the center and haven’t had enough time to
spread out of their borders. Based on Table 3, we arrived at a reasonable C
range (Santos-Silva & Gregorio-Hetem, 2012) as 1.20 ± 0.08 and 4.20 ± 0.49.
Second, Bonatto & Bica (2009) defined density parameters for compact OCs
known as the density contrast parameter (i.e., δc = 1 + fofbg) and give values
7 ≤ δc ≤ 23. Our computed δc are 2.760 ± 0.60 and 2.986 ± 0.58 for both
clusters respectively, and we may conclude that NGC 7031 and NGC 7086 are
scattered concerning their background density.
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Table 3. Our inner structural properties of NGC 7031 and NGC 7086 as compared

with (1) Yontan et al. (2019) and (2) Hunt & Reffert (2024).

Parameters NGC 7031 NGC 7086 References

(fo; stars arcmin-2) 16.319 ± 0.780 24.366 ± 5.473 Current work
1.978 ± 0.059 3.602 ± 0.280 (1)

(fbg; stars arcmin-2) 9.276 ± 0.402 12.381 ± 0.228 Current work
4.006 ± 0.443 5.009 ± 0.171 (1)

(rc; arcmin) 10.7112.98
8.42 1.492.09

0.93 Current work
3.241 ± 1.816 1.517 ± 0.255 (1)

(rc; pc) 2.19 ± 0.68 0.41 ± 0.02 Current work
2.23 2.51 (2)

(rcl; arcmin) 10.04 3.91 Current work
(rcl; pc) 2.05 ± 0.70 1.08 ± 0.03 Current work

9.97 10.66 (2)
(rt; arcmin) 15.4516.83

14.18 5.517.08
4.03 Current work

(rt; pc) 3.16 ± 0.56 1.51 ± 0.18 Current work
9.974 10.656 (2)

C 1.20 ± 0.08 4.20 ± 0.49 Current work
δc 2.760 ± 0.60 2.986 ± 0.58 Current work

4. CMDs and member stars of the clusters

The highly accurate determination of cluster star members can be achieved
by combining radial velocities, distances, and proper motions, either alone or in
combination. Large spectroscopic surveys created for various objectives can now
be used to identify cluster members (Allende Prieto et al. (2008); Gilmore et al.
(2012); De Silva et al. (2015)). Spectroscopic observations require a telescope-
time-focused methodology, which limits our ability to comprehend the charac-
teristics of several clusters. Furthermore, no spectroscopic survey to determine
the radial velocities of all Milky Way stars is scheduled. Fortunately, many
techniques exist to distinguish cluster members from field stars because clus-
ter stars share the same spatial origin (e.g. Krone-Martins & Moitinho (2014);
Javakhishvili et al. (2006); Balaguer-Núnez et al. (1998)). These techniques typ-
ically consider the proper motions of the stars.

Perren et al. (2015) with the ASteCA code used two methods to estimate the
overall number of likely cluster members. The first uses the integral of the RDP
from zero to rt above the estimated star field density and is based on the three-
parameter (3P) King profile fitting. Only a decent tidal radius and convergence
of the 3P fit are required for this method to be effective; otherwise, the result
may be greatly overestimated. The second method is based on a straightforward
star count (nfl), or the approximate number of field stars inside the cluster
region, is obtained by multiplying the field density value (dfield) by the area
(Acl) of the cluster (which is determined by the rcl radius). After deducting this
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amount from the actual number of stars inside the rcl boundary (ncl+fl), the
final estimated number of cluster members, ncl, is obtained:

ncl = ncl+fl − dfield Acl. (4)

Both approaches depend on the degree of completeness since they provide
the approximate number of members down to the lowest observed magnitude.

By looking for a significant stellar over-density and contrasting it with the
surrounding stellar field, the membership probability is assigned using the proper
motion and parallax that are accessible from the Gaia DR3 database with the
ASteCA code. In this investigation, the cluster most probable candidates are
limited to stars with membership probabilities P ≥ 50%. As a result, we have
613 and 226 candidates for NGC 7031 and NGC 7086, respectively.

We employed the ASteCA code and the PARSEC v1.25 of Bressan et al.
(2012) theoretical isochrones for each CMD of the clusters, as well as the Gaia
DR3 photometric magnitudes (G,GBP , GRP ) for our candidates, to derive the
cluster metallicity (Z) and ages (in a log scale). Therefore, the best-suited metal-
licities are 0.01189 ± 0.00023 & 0.01121 ± 0.00025 and the ages (log yr-1) are
8.468 ± 0.007 & 8.617 ± 0.021 for NGC 7031 and NGC 7086, respectively. Our
fitted CMDs for (GBP −GRP , G) mag are shown in Figure 4.

We approximated the reddening with magnitudes GBP and GRP from CMDs
using most likely members from Gaia DR3 using the formula E(GBP −GRP ) =
1.289×E(B − V ) (Cardelli et al., 1989). After correcting the observed data for
reddening AG = 2.74×E(B−V ) using a line-of-sight extinction coefficient (AG)
in the G-band calculated by Casagrande & VandenBerg (2018) and Zhong et al.
(2019), we were able to obtain AG values of 2.55 & 1.93 and E(GBP −GRP ) of
1.197 ± 0.08 & 0.908 ± 0.05 for NGC 7031 and NGC 7086, respectively.

The distance moduli (m − M) for NGC 7031 and NGC 7086 are 9.229 ±

0.037 and 9.869 ± 0.001 mag, respectively. This indicates that the photometric
distances (dphot; pc) in the same manner are approximately 701 ± 26 and 942
± 31, which are slightly different from those obtained by Yontan et al. (2019).

We calculated the mean proper motion on both sides (µ⋆
α, µδ) in the follow-

ing with adopted members using the stellar space distribution as illustrated in
the upper and lower panels of Figure 5, and the results yielded the following
numerical values (−3.03, −2.53; NGC 7031) and (−3.09, −3.26; NGC 7086) in
mas yr-1 units. On the other hand, their Gaussian distributions are displayed in
the left and right panels of Figure 6 with numerical values (0.571; NGC 7031)
and (0.622; NGC 7086) in millarcsec units. Then the reflected astrometric dis-
tances (dplx; pc) are 1752 ± 42 and 1608 ± 40, which are consistent with those
obtained by Hunt & Reffert (2024), Yontan et al. (2019), and Cantat-Gaudin
et al. (2018). All our astrophysical parameters devoted to both clusters are rep-
resented in Table 4 as compared by different authors.

We deduce that the distances to the Galactic center Rgc should be included
based on our estimated dphot distances, which are defined as
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Figure 4. The CMDs of NGC 7031 (left) and NGC 7086 (right). The fitted extinction

was corrected by Bressan et al. (2012).

Rgc =
√

R2
o + (d cosb)2 − 2 Ro d cosb cosl (5)

where Ro = 8.20 ± 0.10 kpc (Bland-Hawthorn et al., 2019). The following
relationships can be used to calculate the projected distances toward the Galac-
tic plane (X⊙, Y⊙) and the distance away from the Galactic plane (Z⊙). The
findings are shown in Table 4.

X⊙ = d cos b cos l, Y⊙ = d cos b sin l, Z⊙ = d sin b. (6)

5. Luminosity and mass functions

Each cluster’s members are formed under similar physical conditions (same mor-
phology) from the same molecular cloud at the same time. Therefore, the OC
luminosity function (LF), which may be viewed as a projection of its CMD
on the magnitude axis, indicates the distribution of member stars according to
different absolute magnitude intervals.

Based on our previously mentioned NGC 7031 and NGC 7086 worksheet
row data from DR3 Gaia Collaboration (2022) we have updated central posi-
tions, and astrophysical and photometric parameters, on this context, we have
computed LF of both clusters as seen in the upper panel of Figure 7, where the
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Figure 5. Mean proper motion distribution and their contours for NGC 7031 (top)

and NGC 7086 (bottom).

estimated average values of absolute magnitudes (MG; mag) of each cluster are
7.51 ± 0.36 & 6.54 ± 0.39 for NGC 7031 & NGC 7086, respectively.

Empirically, the well-established mass-luminosity relation (MLR) links LF
and mass function (MF) together. Additionally, absolute magnitudes (MG; mag)
and collective masses (MC ; M⊙) attributed to adopted isochrones on CMDs for
estimated ages, distance modulus, and reddening are taken into account. These
findings were reported by Evans et al. (2018).

The initial mass function (IMF), which is defined as an initial arrangement
of the star’s masses, can be studied with great benefit from OCs mass spectrum,
which contains both very low and very high mass stars (Scalo (1998); Phelps &
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Figure 6. Parallax Gaussian distribution fitting diagrams for NGC 7031 (left) and

NGC 7086 (right).

Janes (1993); Durgapal & Pandey (2001); Piatti et al. (2002); Piskunov et al.
(2004); Sung & Bessell (2004); Yadav & Sagar (2002); Yadav & Sagar (2004);
Bisht et al. (2017); Bisht et al. (2019)). The IMF, or present-day mass function
theoretically, was defined by Salpeter (1955) as the total number (dN) the den-
sity of stars spread along a logarithmic mass scale in a mass bin (dM) with the
central mass (M),

Log

(

dN

dM

)

= −α Log(M) + constant, (7)

where α is a dimensionless quantity that describes the slope of the straight
line representing the MF-like lower panel of Figure 7, and it is dedicated as
a characteristic of dynamical evolution for massive stars (> 1M⊙). Salpeter’s
power law states that as mass increases, there are fewer stars in each mass range.
Our calculated slopes from least-square fitting the MF data are 2.73 ± 0.25 &
2.67 ± 0.32 for NGC 7031 and NGC 7086, respectively, and agree with Salpeter
(1955) results.

Our study indicates that the stars with the following (MG; mag) ranges are
included in the MFs calculations: (-0.405 ≥ (MG) ≥ 9.116 & 1.333 ≥ (MC) ≥
6.057; NGC 7031) and (0.806 ≥ (MG) ≥ 8.545 & 1.915 ≥ (MC) ≥ 5.038; NGC
7086). The average mass (MC), total mass (MC), and slopes (α) are provided
in Table 5.
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Table 4. Our obtained astrophysical and photometric parameters of NGC 7031 and

NGC 7086 as compared with those of (1) Hunt & Reffert (2024), (2) Yontan et al.

(2019) and (3) Cantat-Gaudin et al. (2018).

Parameters NGC 7031 NGC 7086 References

N 613 226 Current work
264 963 (1)
208 543 (2)
171 622 (3)

(µ⋆
α; mas yr-1) -3.03 -3.09 Current work

-1.242 ± 0.122 -1.656 ± 0.148 (3)
(µδ; mas yr-1) -2.53 -3.26 Current work

-4.205 ± 0.130 -1.629 ± 0.143 (3)
(dplx; pc) 1752 ± 42 1608 ± 40 Current work

1402 1667 (1)
1365+164

−216 1616+225
−312 (3)

(dphot; pc) 701 ± 26 942 ± 31 Current work
Z 0.01189 ± 0.00023 0.01121 ± 0.00025 Current work
log(age yr-1) 8.468 ± 0.007 8.617 ± 0.021 Current work
AG 2.55 1.93 Current work
E(B − V )mag 0.929 ± 0.006 0.704 ± 0.001 Current work
E(GBP −GRP )mag 1.197 ± 0.08 0.908 ± 0.05 Current work

1.254 1.277 (1)
(m−M)mag 9.229 ± 0.006 9.869 ± 0.001 Current work
(X⊙; kpc) -0.050 ± 0.007 -0.135 ± 0.012 Current work

-0.033 -0.128 (1)
(Y⊙; kpc) 1.750 ± 0.042 1.602 ± 0.040 Current work

1.401 1.662 (1)
(Z⊙; kpc) 0.071 ± 0.008 -0.008 ± 0.009 Current work

0.056 0.006 (1)
(Rgc; kpc) 8.432 ± 0.092 8.487 ± 0.093 Current work

6. Evolving times and escape velocity

The interactions between stars in OCs result in energy exchange (Inagaki &
Saslaw (1985); Baumgardt & Makino (2003)). The spatial distribution of OCs
is less dense than that of globular clusters. In the event of a force of contraction
and/or destruction, massive stars exhibit mass segregation towards the cluster
core, compared to fainter stars. Numerous OCs have recently been observed
to exhibit this phenomenon (Piatti (2016); Zeidler et al. (2017); Dib & Basu
(2018); Rangwal et al. (2019); Bisht et al. (2020); Joshi et al. (2020)). Following
a Maxwellian stability equilibrium (i.e., dynamical evolution), the cluster’s ki-
netic energy (velocity distribution) approaches one (Yadav et al. (2013); Bisht
et al. (2019)) within dynamical relaxation time (Trelax; Myr) which is the char-
acteristic time required for dynamical evolution to be completed. Trelax depends
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Figure 7. The true LFs for NGC 7031 and NGC 7086 are shown in the top panel.

These LFs were constructed by taking the cluster’s (m−M) into consideration while

converting the observed G magnitudes of its member stars into absolute magnitudes

MG. The lower panel displays MFs that were obtained using the most likely members;

Salpeter’s power-law fitting is indicated by solid lines in this panel.

on both cluster diameter and the number N of member stars (Lada & Lada,
2003), and according to Spitzer & Hart (1971) is given by

Trelax =
8.9× 105 N1/2 R

3/2
h

√

MC log(0.4 N)
, (8)

where Rh, which can be determined using the transformation outlined by
Šablevičiūtė et al. (2006), is the radius (in pc) containing about 50% of the
cluster mass,

Rh = 0.547× rc ×
( rt
rc

)

0.486, (9)

where the tidal and core radii are denoted, respectively, by rc and rt. There-
fore, the derived (Rh; pc) values are 3.07 ± 0.57 and 0.97 ± 0.01. In the same
manner the (Trelax; Myr) are 1.515 and 0.267 for both NGC 7031 and NGC
7086, respectively. In addition to the relaxation time, we focus on estimating
the evaporation time (τev ≈ 102Trelax; Myr), which is how long it takes to
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Table 5. Our estimated average absolute magnitudes, average mass, total mass, and

the IMF slopes for NGC 7031 and NGC 7086 as expressed with recent literature (1)

Hunt & Reffert (2024).

Parameters NGC 7031 NGC 7086 References

(MG;mag) 7.51 ± 0.36 6.54 ± 0.39 Current work
(MC ;M⊙) 1072 ± 33 598 ± 25 Current work

1403 ± 124 4271 ± 300 (1)

(MG;M⊙) 1.75 2.64 Current work
α 2.73 ± 0.25 2.67 ± 0.32 Current work

Table 6. Table 6: Our dynamical evolution times and escape velocity for NGC 7031

and NGC 7086.

Parameters NGC 7031 NGC 7086

Trelax (Myr) 1.515 0.276
τev (Myr) 151.50 27.60
τ 194 1550
Vesc (km s-1) 251 ± 16 447 ± 21

evacuate every member star from internal stellar encounters (Adams & Myers,
2001). By calculating the dynamical evolution parameter (i.e., τ = age/Trelax),
we may characterize and specify the dynamic state of clusters. We concluded
that our τ ≫ 1 for every cluster, therefore, these clusters are considered to be
dynamically relaxed OCs.

Low-mass stars continue to set off the cluster, primarily at slow speeds
via Lagrange points Küpper et al. (2008). The escape velocity (Vesc; km s-1)
of rapid gas removal from the cluster when it remains bound in the face is
(

Vesc = Rgc

√

2 G MC / 3r3t

)

(Fich & Tremaine (1991); Fukushige & Heggie

(2000)), where the gravitational constant is G = 4.3× 10-6 kpc M−1

⊙ (km s-1)2.
In light of these achieved dynamical parameters, different times, and escaping
velocities are shown in Table 6.

7. Ellipsoidal motion and the kinematical structure

To evaluate the coherent and uniform movements within a confined spatial re-
gion of gravitationally bound stellar assemblies in the Galactic framework, we
applied a computational methodology formulated by Elsanhoury et al. (2018)
and Bisht et al. (2020). This approach was utilized to determine the velocity
ellipsoid parameters (VEPs) and the overall kinematics of the clusters. The
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analysis focused on cluster members identified by their celestial coordinates (αi,
δi) with their proper motion (µ⋆

αi
, µδi), distance (di), and radial velocity (Vr)

with specific velocities (Hunt & Reffert, 2024) being 12.05 ± 7.69 km s-1 (NGC
7031) and -16.10 ± 3.16 km s-1 (NGC 7086). Furthermore, we investigated their
spatial velocity components (Vx, Vy, Vz; km s-1) along the x, y, and z axes of a
solar-centric coordinate system.

The determination of space velocity components in Galactic coordinates
(U, V,W ; km s-1) employs the transformation equations outlined by Liu et al.
(2011) and their distribution is shown in Figure 8.

U = −0.0518807421Vx − 0.8722226427Vy − 0.4863497200Vz, (10)

V = +0.4846922369Vx − 0.4477920852Vy + 0.7513692061Vz, (11)

W = −0.8731447899Vx − 0.1967483417Vy + 0.4459913295Vz. (12)

Figure 8. The distribution of the spatial velocity components for the member stars

of NGC 7031 (black dots) and NGC 7086 (gray dots) in the Galactic coordinates.

Additionally, the apex coordinates of the cluster are ascertained through the
apex diagram (AD) method, as illustrated in Figure 9, employing formulae for
constructing the AD diagram as described by Chupina et al. (2001) and Chupina
et al. (2006):

Ao = tan−1

(

V̄y

V̄x

)

, (13)

and

Do = tan−1

(

V̄z
√

V̄ 2
x + V̄ 2

y

)

. (14)
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Figure 9. The AD diagram for NGC 7031 (left panel) and NGC 7086 (right panel)

with a cross mark denoting the location of their convergent point (Ao, Do).

The AD diagram facilitates an analysis of the cluster’s kinematic structure
and the identification of its internal kinematic substructures. This diagram, cre-
ated from the individual apexes of stars, showcases the distribution of stars
within the equatorial coordinate system, where the apex equatorial coordinates
(in degrees) are labeled Ao (right ascension) and Do (declination). These co-
ordinates result from solving a geometrical problem involving the intersection
points of stars’ spatial velocity vectors with the celestial sphere.

Concerning other kinematic parameters, the cluster center (xc, yc, zc; kpc)
is derived by calculating the mass center of N stars using equatorial coordinates
(αi, δi) and distance di. The solar motion elements, indicating the Sun’s velocity
relative to the star group being studied, are defined as

U⊙ = −Ū , V⊙ = −V̄ , and W⊙ = −W̄

.
Additionally, this study pioneers in estimating the solar apex location

(lA, bA) in Galactic coordinates and their corresponding equatorial coordinates
(αA, δA) for both NGC 7031 and NGC 7086 OCs. We obtained the numerical
kinematical results and the solar motion elements arranged in Table 7. The an-
gular separation angle between NGC 7031 and NGC 7086 is about 3o.81 (i.e.,
55.08 ± 7.42 pc) as depicted in Figure 10.

8. Conclusion

In the current study, we used Gaia DR3 to determine the photometric and
astrometric properties of the star clusters NGC 7031 and NGC 7086. With
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Figure 10. The angular separation between NGC 7031 and NGC 7086.

Table 7. Our obtained results of VEPs for NGC 7031 and NGC 7086 with their solar

motion elements.

Parameters NGC 7031 NGC 7086

V x (km s-1) 9.51 ± 0.32 12.78 ± 0.28

V y (km s-1) -90.27 ± 9.50 -77.96 ± 8.83

V z (km s-1) -40.46 ± 6.36 -24.93 ± 4.99
Ao -83o.99 ± 0o.11 -80o.69 ± 0o.11
Do -24o.02 ± 0o.20 -17o.51 ± 0o.24

U (km s-1) 97.91 ± 9.90 79.46 ± 8.91

V (km s-1) 14.63 ± 3.83 22.37 ± 4.73

W (km s-1) -8.58 ± 0.34 -6.94 ± 0.38
xc (kpc) 2.276 ± 0.048 1.860 ± 0.043
yc (kpc) -2.148 ± 0.046 -1.423 ± 0.038
zc (kpc) 3.850 ± 0.062 2.963 ± 0.054
S⊙ (km s-1) 99.37 ± 9.97 82.84 ± 9.10
(lA, bA)o -8.50, 4.95 -15.73, 4.80
(αA, δA)o -83.99, 24.02 -80.70, 17.52

membership probabilities P ≥ 50%, we assessed the most probable member
stars to be 613 and 226 for respective clusters. We derived all the parameters
using these Gaia-based likely members. Our results are in good agreement with
the estimated parameters found in several of the most recent prior investigations.
Under or overestimated numerical values in Tables 3 and 4 depending on the
number of possible candidates, method of estimation and the data used. The
following summarizes the main findings of the current studies:

• The distances from the cluster centers where the density of the cluster
merged with the background density are named the clusters’ limiting radius rcl.
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Our estimates are 10.04 and 3.91 arcminutes for NGC 7031 and NGC 7086,
respectively.

• We created the proper motion and parallax histograms of these Gaia-
based probable members by utilizing the most likely members of the two clusters
that were found using the Gaia DR3 mean proper motion data. The results we
computed are as follows:

⋆ (µ⋆
α, µδ)NGC7031 is about (-3.03, -2.53; mas yr-1), PlxNGC 7031 is equal to

0.571 mas, and the corresponding distance dplx (NGC 7031) = 1752 ± 42 pc.

⋆ (µ⋆
α, µδ)NGC7086 is about (-3.09, -3.26; mas yr-1), PlxNGC 7086 is equal to

0.622 mas, and the corresponding distance dplx (NGC 7086) = 1608 ± 40 pc.

• The ages (in a log scale) of NGC 7031 and NGC 7086 were determined
to be 8.468 ± 0.007 and 8.617 ± 0.021, by fitting their CMDs with the theo-
retical isochrones of Bressan et al. (2012) using Gaia DR3. According to Gaia
photometry, their isochrone-based distances are 701 ± 26 and 942 ± 31 pc for
respective clusters. The distances of both clusters from the galactic plane, Z⊙,
as well as their projected distances from the Sun, X⊙, and Y⊙, and the galactic
centers Rgc, were then calculated and are all shown in Table 4.

• Total masses (in solar units) are 1072 ± 33 and 598 ± 25 for respective
clusters. As compared with Hunt & Reffert (2024) for total mass (MC ; M⊙) for
both clusters, we found a slight difference in NGC 7031 due to our estimation
and Hunt & Reffert (2024), on the other hand, a large difference in NGC 7086
which we recall for the number of candidates (i.e., 226; current work & 963;
Hunt & Reffert (2024)). The initial mass function (IMF) slope was determined,
i.e. αNGC7031 = 2.73 ± 0.25 and αNGC7086 = 2.67 ± 0.32, and they were found
to be reasonably consistent with the value reported by Salpeter in 1955.

• We deduced that NGC 7031 and NGC 7086 are dynamically relaxed clus-
ters with notable mass segregation based on the computation of their relaxation
time.

• We presented the first complete estimation of the space velocities and
kinematic parameters of both clusters, therefore, the convergent points (-83o.99
± 0o.11, -24o.02 ± 0o.20) and (-80o.69 ± 0o.11, -17o.51 ± 0o.24) with respective
clusters.

• Ultimately, we estimate that the age difference between NGC 7031 and
NGC 7086 is 120 Myr, the linear separation between the two clusters is about
55.08 ± 7.42 pc and the distance difference along the line of sight is 228 pc. Since
these findings do not meet the requirements for a binary cluster, we conclude
that the two clusters are not genuine binary clusters and are most likely not
produced from the same Giant Molecular Cloud (GMC).
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– Emily L. Hunt, Private communication, 2024.
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Abstract. We point out a new feature of gravity within general relativity
(GR): according to GR, the gravity in the innermost region of relativistic com-
pact objects (RCOs) is oriented outward from the object’s center. We explain
how the normal, attractive, gravity does result in such the orientation. Our
analysis of RCO properties, derived from some models which imply the out-
ward oriented action in the RCO central region, indicates that the gaseous
RCOs are the objects in the shape of a hollow sphere with an inner physical
surface. These inner radii can be arbitrarily small (but it is questionable if ever
exactly zero), and this has been, likely, the reason of why the phenomenon of
the outward oriented gravity has escaped our attention. We discuss the con-
ceptual differences between the old, fulfilled-sphere, and new, hollow-sphere,
concepts of RCO. Until now, the new concept has been forbidden by a postu-
late, in fact. This prohibition caused that almost whole general relativity was
forbidden in the astrophysics of RCOs; the Oppenheimer-Volkoff upper-mass
limit is a consequence of this prohibition. In conclusion, we point out that any
model of realistic RCOs in the shape of a rigorous fulfilled sphere has never
been constructed. It is questionable if such a solution of field equation exists.
Within GR, we can easily construct only the models of real stable RCOs in the
form of a hollow-sphere.

Key words: gravitation – general relativity – neutron stars – supermassive
compact objects

1. Introduction

In this article, we give a review of gradually improving knowledge about the
relativistic compact object (RCO), which should acquire the shape of a hollow-
sphere, i.e. the spherical volume constrained not only with an outer, but also
an inner physical surface. A large part of this knowledge was published in our
previous papers (Neslušan, 2015, 2017a,b, 2019; Neslušan, 2022) and papers by
deLyra et al. (deLyra, 2021; deLyra & Carneiro, 2023; deLyra et al., 2023; de-
Lyra, 2023). Anastopoulos & Savvidou (2021) and Kotopoulis & Anastopoulos
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(2023) analyzed a thermodynamic consistency of the equation of state, whereby
they also dealt with the hollow-sphere solutions. One should, however, be careful
with the conclusions drawn in their work since they also considered some unre-
alistic equations of state and outward oriented gravitational action represented
with the help of negative mass. Even before the publishing of all these papers,
the first hollow-sphere model of RCO was published by Ni (2011). Our review
is completed with some new arguments and explanations.

The new concept of RCO raises a lot of questions. For example, if the RCO
in the shape of a hollow sphere is stable; if the metrics inside it and in its
vicinity is continuous; why a vacuum void in its central region occurs; what is
the mechanism of its formation, etc. Of course, the main question is: how is
the hollow-sphere RCO concept related to the currently accepted concept of the
RCO in the form of a fulfilled sphere? What are the arguments in favor of each
of these two concepts?

A discussion about the new concept is important. The general relativity (GR)
provides us with a set of solutions to construct a model of RCO. The extent
of this set can be illustrated with an infinite area. In the scheme in Fig. 1, this
area is shown with the blue color. The area is bordered, from one side, with an
abscissa (drawn with the red color in the scheme). The extent of the solutions
implying the RCOs in the form of a fulfilled sphere is proportional only to this
abscissa. (At the moment, it is however unknown whether the RCO can acquire
the form of an exact or only approximate fulfilled sphere; we discuss this problem
in Sect. 4.2.) The area of the one-dimensional abscissa is zero. The scheme in
Fig. 1 points out that we are currently allowed to use the zero-area part of the
infinite-area set of solutions. Either we should have a very good reason to reject
almost all available solutions or we should abolish the prohibition of using them.

2. Outline of the theory of RCO

2.1. Description of the curvature of space-time

At first, let us outline the theory of RCO in general. In the following, we consider
a simple, static, spherically symmetric object. Using the −−−+ signature and
the coordinate system with the spatial part to be the spherical system O(rϑϕ),
the line element in the case of spherical symmetry is

ds2 = −eλ dr2 − r2 dϑ2 − r2 sin2 ϑ dϕ2 + eν c2dt2, (1)

where −eλ = g11 = grr, −r2 = g22 = gϑϑ, −r2 sin2 ϑ = g33 = gϕϕ, and eν =
g44 = gtt. In the static RCO, the auxiliary metric functions λ and ν are the
functions of only the radial distance, r.

Since we consider a compact object within GR, gravity must be described
by Einstein’s field equations (EFEs) (Einstein, 1915, 1916). For the spherically
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Figure 1. The scheme illustrating the whole extent of all GR solutions to describe the

RCOs (the blue area continuing to infinity upward and rightward) and extent of the

part of solutions which are currently allowed to be used (the red vertical abscissa).

symmetric RCO, these equations acquire the form (Tolman, 1934)
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κT σ
µ = 0 for µ 6= σ, (6)

where κ = 8πG/c4 is the Einstein gravitational constant (G is the Newton
gravitational constant and c is the speed of light in vacuum) and T σ

µ is the stress-
energy tensor. The prime indicates the derivative of a given quantity in respect
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of r and the double prime the second derivative in respect of r. When one deals
with the spherically symmetric neutron stars as well as other gaseous spherically
symmetric RCOs, the stress-energy tensor for a perfect fluid (Tolman, 1934)

T σ
µ =









−P 0 0 0
0 − P 0 0
0 0 − P 0
0 0 0 E









(7)

is relevant, where P is the pressure and E is the energy density.

Four EFEs (2)−(5) contain four quantities, λ, ν, P , and E, which are the
functions of variable r in the considered static case. However, when the compo-
nents of tensor (7) are supplied into EFEs (2)−(5), then EFE (3) is identical
with EFE (4). It means that we have only three equations, in fact, but these
still contain four unknown quantities. We need to supply one more equation to
solve the system. Usually, this additional equation is an equation of state (EoS)
relating P and E. In Sect. 4.6, we however mention other kind of equations
which can be assumed and added to complete the system.

Oppenheimer & Volkoff (1939) replaced the auxiliary function λ by other
metric function they denoted u. This function was defined by

u =
1

2
r
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1 +
1

grr

)

=
1

2
r
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1− e−λ
)

. (8)

In this context, we see that u is another parameter characterizing the space-
time. With the help of all, Eq.(8), matrix (7), and after an algebraic handling,
EFEs (2) and (5) can be re-written to the form

ν′ =
2

r2 − 2ru

(

1

2
κPr3 + u

)

, (9)

u′ =
1

2
κEr2. (10)

Using the last three equations and Eq.(3) or identical Eq.(4) after T 2
2 = T 3

3 =
−P is supplied, we can also express the derivative of pressure in respect to r,
specifically

P ′ = − E + P

r2 − 2ru

(

1

2
κPr3 + u

)

(11)

or, taking into account relation (9),

P ′ = −E + P

2
ν′. (12)
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2.2. Equation of state - examples

In view of our explanation, we consider an example in which the additional
equation is the EoS of the cold, degenerated, Fermi-Dirac, neutron gas (Chan-
drasekhar, 1935), which was also used by Oppenheimer & Volkoff (1939) in their
pioneering work. The EoS can be derived from the integrals known within the
quantum statistics for the number density, nn, pressure, P , and energy density,
E. These integrals can be found in the textbooks (e.g. Hansen & Kawaler, 1994).
In course to calculate them, the authors used an auxiliary quantity, τ , which is
the function of the Fermi impulse, pf , and is defined as

τ = 4 ln





pf
mnc

+

√

1 +

(

pf
mnc

)2


 , (13)

where mn is the mass of a neutron. With the help of τ , the pressure and energy
density can be given as

P =
m4

nc
5

96π2h̄3

(

sinh τ − 8 sinh
τ

2
+ 3τ

)

, (14)

E =
m4

nc
5

32π2h̄3 (sinh τ − τ) . (15)

h̄ is the Planck constant divided by 2π. In the EFEs, P and E are, thus, replaced
with the single quantity τ and it is useful to replace Eq.(11), giving the derivative
of pressure in respect to r, with the equation (Oppenheimer & Volkoff, 1939)

τ ′ = −4
sinh τ − 2 sinh τ

2

r2 − 2ru
.

.

m4

ncG

24πh̄3 r3
(

sinh τ − 8 sinh τ
2 + 3τ

)

+ u

cosh τ − 4 cosh τ
2 + 3

, (16)

which gives the derivative of τ in respect to r. Eq.(16) was derived from Eq.(11)
realizing that dP/dr = (dP/dτ)(dτ/dr) and dP/dτ was calculated deriving (14)
in respect to τ .

If the derivatives in respect to r in Eq.(12) are replaced with the differ-
entiation in respect to τ and relations (14) and (15) are used, we obtain the
equation

(

cosh τ − 4 cosh
τ

2
+ 3

)

dτ =

= −1

2

(

4 sinh τ − 8 sinh
τ

2

)

dν, (17)

which can be analytically integrated. The integration yields a useful relation
between the gtt component of metric tensor and τ ,

eν =
Cν

cosh τ
2 + 1

, (18)
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where Cν is an integration constant.
Besides the EoS expressed with the help of relations (14) and (15), we also

consider the EoS in the form of a polytrope, EoS of radiation, or a combination
of both. The polytrope can be given with the help of relations (Tooper, 1965)

P = KP ρ
1+1/N , (19)

E = NP + c2ρ, (20)

where KP is a constant of proportionality, ρ is the material density, and N is
the polytrope index. The EoS of radiation is

E = 3P (21)

and the EoS, which is the combination of a polytrope and radiation can be given
as

P = KP ρ
1+1/N +

1

3
aT 4 (22)

and with E given by relation (20), again (but this time, P is given by rela-
tion (22), not by (19)). In Eq.(22), a is the radiation constant and T is the
temperature related to material density, in the given context, as

T = Tmax

(

ρ

ρmax

)1/N

. (23)

Tmax and ρmax are the constants, which equal to the maximum temperature
and maximum density, respectively.

3. Acceleration of a test particle in rest, in GR

3.1. Acceleration in the field of a point-like massive particle

In course toward understanding of an RCO configuration in the form of a hollow
sphere, we remind (Neslušan, 2019) and analyze the formula giving the gravita-
tional acceleration of a test particle (TP) in the vicinity of a point-like material
object. The TP is in rest in respect to the object. To calculate its acceleration
within GR, the equation of geodesic,

d2xα

ds2
= −Γα

βγ

dxβ

ds

dxγ

ds
, (24)

should be used. xα (α = 1, 2, 3, 4) are the four-coordinates and Γα
βγ are the

Christoffel symbols. Using relation dxα/ds = (dxα/dt)(dt/ds) (see, e.g., Strau-
mann, 2013, p. 59), equation (24) can be re-written as

d2xα

dt2
=

(

Γ4
βγ

dxα

dt
− Γα

βγ

)

dxβ

dt

dxγ

dt
. (25)
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In the considered spherical coordinate frame centered on the material object,
the TP accelerates in the negative sense of the radial axis. The radial component
of the acceleration is

d2r

dt2
=

(

−Γ1
11 + Γ4

14 + Γ4
41

)

(

dr

dt

)2

− Γ1
22

(

dϑ

dt

)2

−

−Γ1
33

(

dϕ

dt

)2

− c2Γ1
44 =

=

(

−1

2

dλ

dr
+

dν

dr

)(

dr

dt

)2

+ re−λ

(

dϑ

dt

)2

+

+r sin2 ϑ e−λ

(

dϕ

dt

)2

− c2

2
eν−λ dν

dr
, (26)

For the TP being in rest, i.e. with dr/dt = dϑ/dt = dϕ/dt = 0, the last formula
reduces to

d2r

dt2
= −c2Γ1

44 = −c2

2
eν−λ dν

dr
. (27)

Assuming that the object and the TP are in vacuum, the metrics in the
vicinity of the object must be, according to the Birkhoff theorem (Birkhoff &
Langer, 1923), the outer Schwarzschild metrics (OSM) (Schwarzschild, 1916).
We know that this metrics was found as the solution of the EFEs in the case of
spherical symmetry. Hence, only the diagonal components of the metric tensor
are non-zero. We remind that we denoted them (in Sect. 2.1) as g11 = grr,
g22 = gϑϑ, g33 = gϕϕ, and g44 = gtt. In the OSM, components gϑϑ and gϕϕ are
the same as in the flat space-time; specifically, gϑϑ = −r2 and gϕϕ = −r2 sin2 ϑ.
Components grr and gtt equal

gtt = −Kν

grr
= eν = −Kνe

−λ = Kν

(

1− 2uc

r

)

, (28)

where Kν and uc are the integration constants (Equation (3) is the differential
equation of the second order, therefore its solution must contain two integration
constants). In the application like in our case, there is a convention to choose
Kν = 1. If eν and e−λ, expressed by Eq.(28), are supplied into Eq.(27), then
the acceleration of the TP is

r̈ = −
(

1− 2uc

r

)

c2uc

r2
= −c2uc

r2
+

2c2u2
c

r3
, (29)

whereby the minus (plus) sign at the right-hand side indicates its orientation in
the direction toward (outward from) the origin of coordinate frame. The double
dot above r denotes the second time derivative of the radial distance, r.
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3.2. Calibration of constant uc

In a weak gravitational field, the Newton physics well describes the reality and,
thus, the relations derived within GR should converge, in the limit of weak
field, to the corresponding relations in the Newtonian physics. In the weak field,
2uc/r ≪ 1 and can be neglected. Then, the acceleration (29) reduces to

r̈ = −c2uc

r2
, (30)

which is identical to the acceleration calculated by using the Newton gravita-
tional law,

r̈ = −Gm

r2
, (31)

when the constant uc equals

uc =
Gm

c2
. (32)

In the last relations, m is the mass of a massive object in the Newtonian physics.
It is worth stressing that this physics and GR are two conceptually different
theories. Hence, the concept of mass in the former is completely different than
the mass in the latter. In the former, the mass is not related to energy. We
discuss the meaning of quantity u more in Sect. 5.2.

We note that constant uc is, in fact, function u (see Sect. 2.1 and relation
(8)) in the vacuum. Namely, we have E = 0 in the vacuum and, according to
relation (10), u′ = 0, then. After the integration of this differential equation, we
obtain u = uc.

We see that the relativistic acceleration given by relation (29) consists of
two terms. The first term, −c2uc/r

2, is identical, in fact, to the acceleration in
the Newtonian physics and we will refer to it as to the “Newtonian term”. The
second term, +2c2u2

c/r
3, occurs in the GR formula for the acceleration. It is the

“relativistic term”. Interestingly, the sign of the relativistic term is opposite to
that of the Newtonian term. Hence, the relativistic term is a repulsive contribu-
tion to the Newtonian gravitational attraction. Since the inequality 2uc/r < 1 is
always valid above the event horizon, the total gravitational acceleration must
be attractive.

However, when we calculate the acceleration according to (i) the Newtonian
formula (31) and (ii) relativistic formula (29) for the same system of particles
and in the same configuration, then the absolute value of the first acceleration
is greater than that of the second. In other words, the Newtonian gravity is
stronger than the relativistic gravity above the event horizon.

If the whole massive object were located below its event horizon and also
the TP were below this horizon, then, interestingly, its acceleration would be
oriented away from the object; by formula (29), the gravitational action is im-
plied to be repulsive below the horizon. No part of the RCO presented in this
work is, however, located there.
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3.3. Acceleration inside the spherically symmetric shell

This paper introduces the models of RCO in the form of a hollow sphere, with
the inner physical surface and vacuum void inside. The example of such a model
is given in Sect. 4. It may seem to be a paradox that the gravity, with its at-
tractive character, shapes a spherically symmetric object to such a form. In
this sub-section, we clarify the mechanism leading to an occurrence of the out-
ward oriented acceleration in the deep RCO interior due to the gravitational
attraction.

Because of simplicity of our explanation, we consider a thin, spherically
symmetric material shell. It is well-known that the acceleration due to the net
gravity of the shell is zero in the classical, Newtonian physics (this fact is also
shown below). In GR, it is postulated that the metrics in the shell’s interior must
be the Minkowski metrics, which also implies the zero acceleration. However, this
postulate is in a disagreement with the relativistic formula for the acceleration
derived on the basis of the equation of geodesic. Thus, it is also in a disagreement
with the EFEs.

Since we want to discuss the relevance of the old and new concepts of the
RCO, we ignore the postulating the Minkowski metrics and use the above-found
formula for the acceleration to derive the net acceleration in a spherical shell, in
this sub-section. If the equation of geodesic is taken into account, then one can
notice an important consequence of the relativistic term in the formula giving
the acceleration on a TP inside the shell.

So, let us consider a thin, spherically symmetric, material shell. The density
of matter in the shell is constant and equal to ρ. Let the gravity due to the
matter in the shell be weak, therefore we can proceed, in our derivation, as in
within the Newtonian physics. To describe the acceleration of TP, we further
consider the rectangular coordinate frame O(xyz) with the origin identical with
the position of the TP (Fig. 2). The center of the shell is situated on the negative
part of the coordinate z-axis and its distance from the TP is smaller than the
radius of the shell.

As seen in Fig. 2, the coordinate x−y plane intersects the shell dividing it
to the upper and lower globular canopies (the cross-curve of this plane with the
shell is shown with the ellipse in Fig. 2; the center of the ellipse is identical to
the position of the particle). Firstly, we calculate the partial acceleration of the
TP due to the gravity of the matter in an infinitesimally small volume of the
shell, dV1, in the upper canopy. The volume is seen from the position of the
particle under space angle dΩ = sinϑ dϑ dϕ and the mass inside this volume is
µ1 = ρr21dΩ dr. Symbol r1 stands for the distance between the volume and the
TP.

It is worth characterizing the position of the TP also in the rectangular frame
O(x̃1ỹ1z̃1) with the origin identical with the position of volume dV1 and the axes
x̃1, ỹ1, and z̃1 parallel with x, y, and z, respectively (Fig. 2). In this frame, the
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Figure 2. The scheme illustrating the position of a test particle (TP) inside a thin

material shell (the large circle) and positions of two considered small partial volumes of

the sphere, dV1 and dV2 (small ellipses). In Sect. 3.3, this scheme is used to explain the

acceleration of the TP due to the matter of each of these volumes. In the explanation,

three coordinate frames, O(xyz), O(x̃1ỹ1z̃1), and O(x̃2ỹ2z̃2), are considered. From the

position of the particle, volume dV1 is seen under the same space angle, dΩ, as volume

dV2. The particle is located in the origin of the frame O(xyz). The origins of frames

O(x̃1ỹ1z̃1) and O(x̃2ỹ2z̃2) are identical with the positions of volumes dV1 and dV2,

respectively, and their axes are parallel with the corresponding axes of O(xyz) frame.

The whole shell is divided by the coordinate x−y plane (the cross-curve of both the

plane and the shell is the ellipse with the horizontal axis passing through the TP),

into upper and lower globular canopies. Volume dV1 is situated in the upper and dV2

in the lower canopy.

position of the TP can be characterized with the radial distance r̃1 = r1 and
angles ϑ̃1 = π + ϑ, ϕ̃1 = ϕ.

Let us ignore, for a while, the remaining part of the shell and consider only
the TP and the matter in the volume. The infinitesimally small volume can
be regarded as a point and the metrics in its vicinity is the OSM. It means
that the parameter uc can be given with the help of mass µ1 as u1 = Gµ1/c

2.
We describe the OSM metrics and corresponding acceleration of the TP in the
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rectangular coordinate frame O(x̃1ỹ1z̃1). The z̃1-component of the acceleration
of the TP due to the matter in the volume is given by

¨̃z1 = −
(

1− 2Gµ1

r1

)

Gµ1

r̃21

z̃1
r̃1

(33)

(see, e.g., our earlier paper (Neslušan, 2023), where we derived the x-component
of the acceleration; the formulas for the other components are analogous; these
can be obtained by the cyclic interchange of spatial variables, x → y → z → x).

Obviously, z̃1/r̃1 = cos ϑ̃1 and since ϑ̃1 = π−ϑ, we can write z̃1/r̃1 = z̃1/r1 =
− cosϑ (Fig. 2). Because the z-coordinate is related to z̃1 as z = z̃1 + r1 cosϑ,
then z-components of corresponding accelerations are related as z̈ = ¨̃z1 (the
position of volume dV1 does not change in time, therefore r1 and ϑ are not
functions of time). Using these relations and µ1 = ρr21 sinϑ dϑ dϕdr, relation
(33) can be re-written as

z̈1 = Gρ cosϑ sinϑ dϑ dϕdr −

−2G2ρ2

c2
r1 cosϑ(sinϑ dϑ dϕdr)2, (34)

where z̈1 is the acceleration of the TP due to volume dV1 referred in the O(xyz)
frame.

Secondly, let us consider the matter in the infinitesimal volume of the shell,
dV2, in the exactly opposite direction than the first volume (Fig. 2). Also the
second volume is seen from the position of the TP under space angle dΩ. When
we calculate the acceleration of the TP, the volume can be regarded as a point-
like massive particle with the neighboring metrics being the OSM. Now, we
describe the metrics and corresponding acceleration in the third rectangular
coordinate frame O(x̃2ỹ2z̃2) with the origin identical with the position of dV2

and axes parallel with the axes of the O(xyz) frame. In O(x̃2ỹ2z̃2), the position
of the TP is characterized by radial distance r̃2 = r2 and with angles ϑ̃2 = ϑ
and ϕ̃2 = π + ϕ.

The z̃2-component of the acceleration of the TP due to the gravity of matter
in dV2 can again be calculated by using relation (33) with the interchanges
z̃1 → z̃2, r̃1 → r̃2, and µ1 → µ2. Therefore, the mass of dV2 equals µ2 = r22 dΩ dr
and uc in the OSM can be expressed as u2 = Gµ2/c

2. Now z̃2/r̃2 = z̃2/r2 = cosϑ
and the relation for the acceleration in the case of dV2 can be given as

z̈2 = −Gρ cosϑ sinϑ dϑ dϕdr +

+
2G2ρ2

c2
r2 cosϑ(sinϑ dϑ dϕdr)2 (35)

in the O(xyz) frame (it is valid z = z̃2 − r2 cosϑ and, hence, z̈ = ¨̃z2).
The first, Newtonian, term in (35) has the same size, but opposite sign than

this term in (34), therefore the sum of the Newtonian terms in both components



60 L.Neslušan

of the acceleration, z̈1 and z̈2, is zero. This is valid not only for the two considered
infinitesimal volumes, but for every pair of volumes of which the first is located
in the upper and the second one in the opposite direction in the lower globular
canopy. The partial Newtonian gravity of the first volume is always eliminated
by the partial Newtonian gravity of the second volume, which is seen under the
same space angle. As we already mentioned, the resulting net gravity in the
shell is zero in the Newtonian physics.

However, the sum of the relativistic terms is not zero. We have

z̈1 + z̈2 =
2G2ρ2

c2
(r2 − r1) cosϑ(sinϑ dϑ dϕdr)2. (36)

Angle ϑ characterizes the position of volume dV2 in the lower globular canopy,
therefore it ranges from zero to π/2 and cosϑ > 0. It is also valid that r1 < r2
(see Fig. 2), i.e. r2−r1 > 0, therefore the total acceleration, due to the combined
action of both volumes, is z̈1 + z̈2 > 0.

The positive value of the acceleration means that its z-component, in the
O(xyz) coordinate frame, is oriented in the positive direction of the coordinate
z-axis. This is, again, valid for each pair of volumes, the first in the upper and
the second in the lower globular canopy, which are seen from the position of
the TP under the same space angle. Taking into account all possible pairs of
volumes, summarily, we deduce that the net acceleration due to the gravity of
matter in the upper canopy is larger than the net acceleration due to the gravity
of matter in the lower canopy (Neslušan, 2019, see especially Fig. 7b). It means
that the TP is accelerated away from the center of the shell. However, we would
like to stress, again, that the TP is not repelled from the shell’s center; it is
attracted by the matter of the upper globular canopy with a stronger gravity,
which dominates over a weaker gravity of the lower globular canopy.

It is well known that GR is not a linear theory, therefore our explanation
described above is valid only for a weak field. In a strong field, the first result of
our deduction, i.e. the acceleration for the system ”matter in the 1-st volume”-
”test particle”, is no longer valid after the ”matter in the 2-nd volume” is added
to this system. In GR, the partial accelerations cannot be given as a simple
vectorial sum as in the Newtonian physics. We presented the explanation valid,
approximately, for a weak field in the sake of its transparency of the operating
mechanism.

The generally correct way to calculate the acceleration in the shell is solving
the EFEs as it was made in the construction of an example of a neutron star,
which is presented later, in Sect. 4.1. However, the effect of the outward oriented
gravitational action is not, then, very transparent. The resulting solution of the
numerical integration of the EFEs is discussed more in the following section.
Anyway, the explanation given in the text above indicates that the gravitational
acceleration of a TP in the interior of a spherical layer of RCO matter is non-zero
and oriented outward in GR.
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4. Example of RCO

4.1. Modeling of RCO

A simple model of a neutron star can be created solving field equations (9),
(10), and (16), in which P and E are expressed with the help of (14) and (15).
Equations (9), (10), and (16) contain three quantities, ν, u, and τ , which are
functions of a single variable r; the system can be solved.

An analytical solution of these equations is unknown, therefore one can solve
them via a numerical integration. The integration cannot start in the object’s
center, in r = 0, since the denominator r2 − 2ru → 0 for r → 0 in the fractions
in Eqs.(9) and (16). The integration must start in a finite star-centric distance.

Researchers who modeled neutron stars usually started the integration at
a small star-centric distance ∆r. The integration was processed outward and
terminated at the outer physical surface of the star where the pressure and
energy density vanished. They assumed that all quantities acquired essentially
the same value in the true center of the star (at r = 0) as in the small starting
distance ∆r, since ∆r could be, e.g., 1 cm. Hence, the assumption seems to be,
intuitively, reasonable in the case of an object with ∼10 to ∼15 km radius.

It however appears that the human intuition fails in this case. If one starts
the integration in a finite star-centric distance and performs it in two stages:
stepping outward and inward, then the pressure and energy density vanish not
only at the outer physical surface, but they, earlier or later, decrease and vanish
in a non-zero star-centric distance in the inward processed integration as well.
This fact implies the existence of an inner physical surface and vacuum void
inside. In Sect. 4.2, we explain why the inner surface occurs in a gaseous object.
In Sect. 4.6, we discuss some known solutions leading to a fulfilled-sphere RCO
and explain why these solutions are irrelevant to the real gaseous RCOs.

In Fig. 3, there is the behavior of pressure in a model of a neutron star
constructed by integrating Eqs.(9), (10), and (16) for the EoS given by relations
(14) and (15). It is reasonable to start the integration in the distance, ro, where
the net gravity is zero (where ν′ = 0) and also the pressure and energy density
reach their maximum (where the function representing the pressure reaches a
local extreme, i.e. P ′ = 0). Seeing relations (9) and (11), ν′ = 0 and P ′ = 0 if
(1/2)κPmaxr

3
o + uo = 0. From the latter

uo = −1

2
κPmaxr

3
o (37)

in the zero-gravity distance (Neslušan, 2017b). From this point, the integration
should be done in two stages, stepping inward and outward. The maximum pres-
sure, Pmax, and the zero-gravity distance, ro, are arbitrary input parameters.
One can vary their values to obtain the model of an object with the required
mass and the outer (or inner) radius.
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Figure 3. The dependence of the pressure, P , on the radial distance, r, from the center

of the star in the example of a neutron star presented in Sect. 4. The zero-gravity

distance in this object is ro = 25 km. Its inner and outer radii equal 16.7 and 34.4 km,

respectively.

4.2. Distribution of state quantities

When we proceed as described in the previous sub-section, we can construct
a model of RCO - a neutron star. In the example with the result shown in
Fig. 3, the distance of zero net gravity was chosen to be ro = 25 km and the rest
energy in terms of the rest mass, Mo, was achieved, doing an iteration, to be
Mo = 5M⊙ (it corresponded to the Fermi impulse in ro equal to 0.27464mnc).
We remind that the rest mass is given by the formula (e.g. Straumann, 2013;
Misner et al., 2017, but with Rin ≡ 0, there)

Mo = 4πmn

∫ Rout

Rin

nnr
2√−grr dr, (38)

where nn is the number density of neutrons. It can be calculated as (Oppen-
heimer & Volkoff, 1939)

nn =
1

3π2

(mnc

h̄

)3

sinh3
τ

2
. (39)

As seen in Fig. 3, the pressure decreases outward as well as inward from ro.
The stability of the object is kept by a balance between the gravity and the
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gradient of pressure. Let us analyze the net gravitational acceleration in more
detail. When one divides the RCO into a large number of thin concentric layers
and considers a radius r, there is a certain number, Nl, of spherical layers with
radii smaller than r (“lower” layers) and a certain number, Nu, of spherical
layers with radii larger than r (“upper” layers). Obviously, all the lower layers
attract a TP in distance r downward, toward the RCO center, and the upper
layers attract it outward as indicated in Sect. 3.3.

Let the TP be initially located at such a distance r that the net acceleration
due to the lower layers is larger than that due to the upper layers, therefore
the particle is accelerated inward. If we consider the particle at a smaller r
than initially, the number of lower layers is smaller and the number of upper
layers larger. Correspondingly, the net gravity of lower layers is reduced and
that of upper layers magnified. If we further reduce r, then there must occur a
critical distance, ro, in which the absolute value of the net acceleration of lower
layers just equals the absolute value of the net acceleration of upper layers.
The total net gravity is, thus, zero in this distance. In distances r < ro, the
outward oriented net acceleration due to the upper layers must prevail; the
particle accelerates outward in this region.

It seems that the region of the outward oriented gravity must exist in every
gaseous RCO. Let us perform the following deduction. Imagine an RCO with
both the inner radius and the zero-gravity distance approaching zero. In such
an RCO, the mass within the sphere of radius ro approaches zero when ro → 0
and, thus, the net gravity of the lower layers must also approach zero. This
very low net gravity must be overcome by the net gravity of the upper layers
before ro reaches the exact zero value, because the acceleration due to this
gravity approaches a finite (i.e. greater than zero) constant when ro → 0. This
deduction would surely be correct in the flat space-time of Newtonian physics.
However, the geometry of curved space-time is more difficult and we cannot
exclude that the net gravity of the upper layers does not dominate even in the
exact center of RCO.

The problem of existence or non-existence of the solution implying a real-
istic fulfilled-sphere RCO model could be solved with the help of an analytical
solution of the EFEs for a realistic EoS. In physics, such a solution is often
searched for in the form of Taylor series. Actually, we can find the coefficients of
the series for P , E, and u in the vicinity of the center. However, the individual
terms are so complicated that it is practically impossible to prove a convergence
of the series.

In a stable RCO, the gravity is balanced by the gradient of pressure. In
region r > ro, the gravity acting on each concentric layer is oriented inward and
the gradient of pressure, being the same size as the gravity, pushes the layer
outward (notice the decrease of the pressure with the increasing radial distance
in this region in Fig. 3). In region r < ro, the orientation of the forces is opposite:
the gravity acts outward and gradient of pressure inward (the pressure increases
with the increasing radial distance, here).
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4.3. Behavior of metrics

The behavior of the quantities grr, gtt, and u characterizing the metrics in our
example of RCO is shown in Fig. 4. In a realistic model of a neutron star or
any realistic RCO, the metrics of the RCO body must be smoothly tailored
to the external, vacuum metrics. (We use the term “RCO body” to refer to
the volume inside the RCO, between the RCO-centric spheres with radii Rin

and Rout.) According to the Birkhoff theorem (Birkhoff & Langer, 1923), the
vacuum metrics in the vicinity of a spherically symmetric distribution of matter
must be the OSM. Actually, as demonstrated in Fig. 4, only this metrics can be
smoothly tailored to the metrics of the object’s body. The behavior of the RCO-
body metrics is shown with the thick blue curve in each panel of the figure. The
OSM in both outer (green curves) and inner (purple curves) physical surfaces
actually touches the RCO-body metrics at the end points of the blue curve and
the corresponding OSM curve smoothly continues behind the corresponding end
point; there is no break in the merged curve. It means that the corresponding
derivatives in respect to r equal each other; this was verified making a numerical
calculation of the derivatives.

In Fig. 4c, notice that function u < 0 below the distance rz, whereby Rin <
rz < Rout. The negative u occurs in the central region of the RCO body as well
as in the internal vacuum void of any numerically created model of the RCO
consisting of a comprehensible perfect fluid.

In the OSM, the function u is a constant. In the region r < Rin, we denote
this function by uin (the purple straight line in Fig. 4c) and in r > Rout by
uout (the green straight line). The OSM grr component of metric tensor can
be tailored to the grr of the RCO body at distances r = Rin and r = Rout.
The OSM grr equals grr = −1/(1 − 2uin/r) in the region r ≤ Rin (the purple
curve in Fig. 4a) and grr = −1/(1− 2uout/r) in the region r ≥ Rout (the green
curve in Fig. 4a). Similarly, the gtt component of the OSM can be tailored
to gtt of the RCO body at distances Rin and Rout and can be calculated as
gtt = Kν,i(1 − 2uin/r) in the region r ≤ Rin (the purple curve in Fig. 4b) and
gtt = Kν,o(1− 2uout/r) in r ≥ Rout (the green curve).

There is a convention to put Kν,o = 1. Since the whole behavior of gtt,
from r = 0 to r = ∞, is fixed by this calibration, the constant Kν,i cannot be
chosen arbitrarily. It can be calculated on the basis of relation (18). At the inner
and outer RCO surfaces, the pressure and energy density vanish, therefore the
corresponding Fermi impulse equals zero in Rin and Rout. Then, according to
(13), also τ = 0 at these two distances. For τ = 0, gtt(Rin) = Cν/2 as well as
gtt(Rout) = Cν/2, therefore gtt(Rin) = gtt(Rout), according to (18). Notice that
the component gtt inside the RCO-body (the blue curve in Fig. 4b) begins and
ends at the same value. It means that Kν,i(1−2uin/Rin) = Kν,o(1−2uout/Rout)
or (Neslušan, 2015)

Kν,i =
1− 2uout

Rout

1− 2uin

Rin

, (40)
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Figure 4. The dependence of grr (panel a) and gtt (b) components of the metric

tensor, as well as the auxiliary function u (c) on the radial distance, r, in the example

of the neutron star presented in Sect. 4. The metrics in the star’s body is shown with

the thick blue curve. The OSM, which can tailored to the RCO-body metrics at the

outer (inner) physical surface in the right-hand end (left-hand end) of the thick blue

curve, is shown with the thin green (thin purple) curve in each plot. The corresponding

Minkowski metrics is shown with the black or orange straight line (see Sect. 4.4).
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if we take into account the convention Kν,o = 1. In the example of a neutron
star presented above, Kν,i = 0.549047.

An analogous equation to Eq.(18) can also be found for other EoSs than (14)
and (15); probably for every reasonable EoS. For the polytrope (see relations
(19) and (20)), in which E and P are functions of the material density, ρ, one
can find

eν =
A1

(1 +A2ρ1/3)2
, (41)

where A1 is an integration constant and A2 is a constant related to the maximum
pressure and maximum material density of RCO. deLyra & Carneiro (2023)
found the equation relating gtt component and the energy density for other
kind of a polytrope. Again, ρ = 0 or E = 0 in both Rin and Rout, therefore
gtt(Rin) = gtt(Rout) also in these cases. Likely, this equality is universal.

In the vacuum far from the star, i.e. at a distance r ≫ Rout, the gravitational
acceleration of a TP due to the star’s gravity can be well approximated with
the Newtonian formula

r̈ = −GMout

r2
, (42)

in which the parameter uout is again calibrated with the parameter Mout, which
can be identified with the Newtonian mass of the object, whereby Mout =
c2uout/G. We established this new notation because we use Mout as the param-
eter within GR. As seen, it corresponds to uout, which characterizes the vacuum
metrics in the region of r ≥ Rout. (Later, we use also notationMin = c2uin/G for
the parameter corresponding with uin, which characterizes the vacuum metrics
in the region of r ≤ Rin.)

Since the neutron star is the RCO with the GR gravity different from its
Newtonian counterpart, acceleration (42) is not proportional to the mass M
which is the equivalent of the total energy (see Sect. 5), but it is determined
by the value Mout characterizing the metrics above the outer RCO surface.
While the total mass, calculated within GR, is M = 4.97457M⊙, the Newtonian
mass Mout = 2.88708M⊙ in our example. When the experts spoke about the
measured “mass” of a neutron star, they spoke about the quantity Mout, in fact.
In the case of the given example, they would say that the mass is 2.88708M⊙

(not 4.97457M⊙). Unfortunately, the Newtonian and GR concepts of mass are
often used in a confusing way in this context.

The actual energy content of all known neutron stars is still unknown. We
can only guess that the true M is significantly larger than the measured Mout.

1

In our example, we can clearly see the essential difference between GR and
Newtonian physics in the case of RCOs.

1Some models of the super-massive RCOs constructed with the EoS in the combined form
of a polytrope and radiation imply that the total RCO mass as the equivalent of energy can
exceed its Newtonian mass Mout by several orders of magnitude, so far. (Neslušan, 2022)
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4.4. A note on the Minkowski metrics inside a spherical shell

In the literature, we can find a claim that the space-time inside the spherical
shell is described by the Minkowski metrics, which implies zero gravitational
acceleration of a TP. Our deduction made in Sects. 3.3 and 4.2 however implies
that this claim has the character of a postulate. In addition, the claim is in a
disagreement with the Birkhoff theorem (Birkhoff & Langer, 1923) saying that
the vacuum metrics in the vicinity of any spherically symmetric distribution
of matter must be the OSM (with uc 6= 0; the Minkowski metrics can also be
regarded as the special case of the OSM, with uc = 0).

To postulate the Minkowski, flat, metrics, in the RCO vacuum void, one
must neglect the second term in relation (29). It means that the acceleration
implied by the equation of geodesic is replaced with the acceleration by the
Newton gravitational law, in fact. In other words, the equation of geodesics is
ignored, therefore GR itself is ignored. The Minkowski metrics was postulated
to achieve the regularity of metrics in the RCO’s center (see Sect. 7.1). But it
is not a very logical way, when one, in course to achieve the regularity within
GR, must ignore this theory.

In addition, the Minkowski metrics (−1, −1, −1, 1) cannot be smoothly
tailored with the metrics in the shell’s body (Neslušan, 2017b) as is demon-
strated in Fig. 4 (the black straight line in each panel). If the gtt component
of the Minkowski metrics equaled other constant than unity, the net gravity in
the shell would also be zero. But even if we chose such a constant, which would
lead to the linking of the Minkowski gtt with the shell-body gtt in Rin (this
alternative Minkowski gtt is drawn with orange color in Fig. 4b), the derivatives
of both the orange straight line and the blue curve in Rin would not be equal.
There would still be a discontinuity of the metrics. In conclusion, the postulate
of the Minkowski metrics inside the spherical shell is physically unacceptable.

It is also unacceptable when we consider an infinitesimally thin shell. Then,
the OSM relevant to the vacuum above the shell must be smoothly tailored with
the Minkowski metrics in the shell’s internal void. This is, however, impossible,
since the derivatives dgrr/dr and dgtt/dr of the OSM are never zero at the shell’s
radius and, thus, they cannot match their Minkowski-metrics counterparts. The
metrics that can be smoothly tailored to the RCO-body metrics at the inner
surface of RCO is the OSM with a constant uc < 0 as we demonstrated in
Sect.4.3 (see especially Fig. 4).

4.5. On the central singularity

As already mentioned, the metrics in the vacuum void below the RCO’s inner
surface is the OSM, but with uc ≡ uin < 0 (Fig. 4c). The OSM has a singular
point at r = 0, since gtt → ∞ (not −∞ because uin < 0).

The inequality uin < 0 means that a TP in the void is accelerated outward
from the RCO’s center as it was indicated in Sect. 3.3 and modeled in Sect. 4.3.
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This acceleration increases above all limits when r → 0, but, because it is
oriented outward, the singularity is the Big-Bang type singularity (Neslušan,
2019). Thus, it is not in a conflict with the cosmic censorship (Penrose, 1969).

The “repulsive” character of the singularity was also stated by deLyra et al.
(2023) in the conclusions of their paper. We should however be careful when
we use the adjective “repulsive”. It can be used for the sake of simplicity of
language to express the “repulsive” (from the RCO’s center) orientation of the
force field. When we however analyze the physical nature of the force action, we
must realize that the point in the exact RCO’s center is a vacuum point having
no influence on a TP in its vicinity. The active agent acting on the particle is
the circumambient matter of the RCO, which attracts it away from the center.
This attraction increases above all limits when r → 0 because of the geometry
of space-time in the RCO’s internal vacuum void.

In reality, the mass of RCO-constituting matter is finite and a finite mass
can be a source of only a finite action. Then, the singularity due to a finite ac-
tion cannot be a true singularity. This claim can be supported by the following
thought experiment (Neslušan, 2019). We shoot a particle situated in the inter-
nal RCO cavity toward the RCO center (singularity). If the kinetic energy of
the particle is so small that its influence on the metrics in the cavity is negligible
in comparison to that of the matter constituting the RCO, then the particle is
decelerated, approaches the center up to a certain finite distance, where it is
stopped, and then accelerated back by the gravity of the RCO matter.

On the contrary, if the energy of the particle is so high that the influence
of this energy dominates over that of the RCO matter, then the metrics inside
the vacuum void is re-configured. The presence of this high energy must have
an impact on the neighboring space-time. After the re-configuration, the central
singularity simply disappears. In such a case, the particle can pass through the
point at r = 0, but this point is no longer a singular point. The experiment
implies that the central singularity is only an abstract singularity, which figures
in our mathematical description of the void metrics, but the singular point
(until it remains singular) can never be visited by any material object and,
hence, detected by any observer.

4.6. Remarks on the fulfilled-sphere solutions

In the context of the hollow-sphere concept of RCO, it is necessary to mention
some known solutions of the EFEs, which resulted in the objects without the
inner radius (e.g. Tolman, 1939; Buchdahl, 1967; Whittaker, 1968).

In Sect. 2, we showed that EFEs (3) and (4) are identical and this circum-
stance reduces the number of equations in the system to three, but we have four
unknown quantities. One equation must be supplied from outside of GR. Since
there is no mathematical restriction, any equation, representing any definition,
can be chosen. For example, Tolman (1939) assumed an ad hoc behavior of the
auxiliary metric functions λ = λ(r) and ν = ν(r), specifically eνν′/(2r) = const.
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(Solution IV), eν = const. (Solution V), or e−λ = const. (Solution VI). Although
such the additional assumption is only an author’s fantasy, one can still obtain
a toy model resulting from the mathematical solution of the EFEs.

Such a model is not, however, related to reality. It can answer the question
of what would the internal structure of RCO look like if we assumed, e.g.,
eνν′/(2r) is equal to a constant. It is, however, questionable if the RCO model
with such a structure could be applied to a real object. The fact that such
the model is irrelevant to reality can be also seen from the discrepancy that a
specific real RCO can be described by only one, unique, solution, but Tolman
published seven various solutions and many other solutions were published by
other authors. The behavior of no quantity in the RCO body can be guessed,
when we deal with a model of a real object. From the point of view of physics,
a correct way to solve the EFEs, in course to obtain a realistic model of RCO,
is consideration of a realistic EoS, which is the input (the fourth equation) into
the system of the EFEs. Then, solving the EFEs, one obtains a regular, realistic
model of RCO.

As we argued in Sect. 4.1, the numerical modeling of RCO always implies
an object in the form of a hollow sphere. An exception is an RCO consisting of
the incomprehensible perfect fluid. The incomprehensibility implies a resistance
of fluid against a deformation. Such the fluid would have a constant density,
ρ, throughout the RCO’s body. Several solutions of the EFEs applicable to
the RCOs of this kind were found, e.g., the solution published by Schwarzschild
(1916) or Solutions I−III by Tolman (1939). Nevertheless, the gravity is oriented
outward in the innermost region also in the objects constructed on the basis of
these solutions. The distribution of matter down to the center is caused by the
incomprehensibility.

The objects described by the models with an artificially defined behavior of
a quantity in their bodies, like that in the papers by, e.g., Tolman (1939); Buch-
dahl (1967), or Whittaker (1968), could, perhaps, be artificially constructed.
However, they would have been constituted of a solid material, with a signifi-
cant tensile strength. The strength, resisting a deformation of material, should
be then taken into account and other stress-energy tensor than that for a per-
fect fluid, defined by relation (7), should have to be used. The stress-energy
tensor (7) and corresponding EFEs (9)−(11) are not relevant to a solid mat-
ter. Hence, the solutions implying the fulfilled-sphere RCOs, published by the
above-mentioned authors, are ruled out as contra-examples of the necessity of
hollow-sphere configuration of gaseous RCOs.

Taking into account this circumstance, we are forced to state that no model of
RCO, which would have been completely described (from RCO-centric distance
r = 0 to r = ∞), has ever been constructed and published. This is in a contrast
with the hollow-sphere models, one of which is just published in this paper and
other models were published in our past papers as well as in the paper by other
authors (the references to these papers are given in Sect. 1).
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5. Energy of RCO

5.1. General formulas. Mass

In GR, the energy, W , of a static, spherically symmetric RCO can be calculated
as the integral of energy density, E, through the RCO’s volume, i.e. from its
inner surface with radius Rin to its outer surface having radius Rout. Specifically
(e.g. Straumann, 2013; Misner et al., 2017, but with Rin ≡ 0, there),

W = 4π

∫ Rout

Rin

r2E dr. (43)

If we take into account EFE (10), the integrand r2E equals

r2E =
2

κ

du

dr
=

c4

4πG

du

dr
(44)

and relation (43) can be re-written as

W =
c4

G

∫ Rout

Rin

du

dr
dr =

c4uout

G
− c4uin

G
(45)

where we denoted u(Rin) = uin and u(Rout) = uout. It appears that the in-
equalities uin < 0 and uout > 0 are always valid. Hence, the energy W =
|c4uout/G|+ |c4uin/G| > 0, i.e. the energy is positive.

5.2. A remark on quantity u in the context of mass

As we stated in Sect. 3.2, the parameter uc can be calibrated, after it is multi-
plied by the constant c2/G, with the help of Newtonian mass. However, is the
quantity ucc

2/G really a mass? We know that each quantity in the unit of length
multiplied by c2/G becomes the quantity of the unit of mass. For example, a
vector r = (x, y, z) multiplied by c2/G changes to mr = (mx, my, mz), i.e.
its components are quantities in the unit of mass. An object may be located
at a position, where one or more of its components x, y, or z, and, hence, mx,
my, or mz are negative. Can we say that the object cannot be in any such a
position because a “mass” must not be negative? Of course, this would not be
a reasonable demand. At the same time, we cannot demand that the negative
values of the quantity uc2/G must be forbidden.

In GR, the quantity uc2/G cannot be regarded as a mass despite its unit,
which is a unit of mass. Its different character can be demonstrated in the
following deduction. Let us consider a small volume inside a neutron star body.
(Here, it is not important whether we describe this star by the old, fulfilled-
sphere RCO concept or by new, hollow-sphere concept.) Its energy, W , is the
integral of energy density through this volume. Since E > 0, here, W > 0 and
also mass M = W/c2 > 0. However, if we consider such a volume in the vacuum
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above the outer surface, E = 0 and, consequently its integral through the volume
is zero, therefore M = W/c2 = 0. But the space-time in the vacuum above the
outer surface is curved; it is described by the OSM with the metric parameter
uc > 0 and, hence, uc2/G > 0 in the place of the considered small volume. We
see that uc2/G cannot be mass. A quantity cannot be zero and non-zero at the
same time.

In each realistic model of RCO that we or other authors created, the energy
density was considered to be positive in any part of the RCO body. Therefore,
its integral, corresponding energy as well as the corresponding mass were only
positive (or zero in the vacuum below the inner and above the outer RCO
surfaces). A negative value of uc2/G in the region r < rz of RCO is acceptable,
since it is not a mass.

The metric quantity u is an alternative form of the grr component of the
metric tensor (see relation (8)). If u ≥ 0, then grr ranges from −∞ to −1.
However, one can ask why is this component of metric tensor constrained by
the value of −1? In physics, it is reasonable to demand a negative (in the −−−+
signature), real-valued grr, but there is no argument why the interval from −1
to 0 should be ruled out. In other words, why should u < 0 be ruled out?

5.3. Hidden energy and other kinds of energy

In Sect. 4.3, we already mentioned that there can always be found such a dis-
tance rz inside the RCO body, where the auxiliary metric function u equals
zero. In an attempt to represent terms c4uout/G and −c4uin/G in the result of
the energy calculation (45), we can divide the integration in this relation to two
integrations (deLyra, 2023),

Wh =
c4

G

∫ rz

Rin

du

dr
dr =

c4uz

G
− c4uin

G
(46)

and

Wout =
c4

G

∫ Rout

rz

du

dr
dr =

c4uout

G
− c4uz

G
. (47)

Since uz ≡ u(rz) = 0, uin < 0, and uout > 0, these relations reduce to

Wh = −c4uin

G
=

∣

∣

∣

∣

c4uin

G

∣

∣

∣

∣

, (48)

Wout =
c4uout

G
=

∣

∣

∣

∣

c4uout

G

∣

∣

∣

∣

. (49)

The acceleration above the outer RCO surface is proportional to uout which
corresponds to the Newtonian mass Mout according to relation (42). If we ob-
servationally determine the mass of RCO, i.e. the mass of a neutron star or a
super-massive object in the center of a galaxy or a quasar, then we determine
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the Newtonian mass Mout corresponding to uout which yields the corresponding
energy content Wout according to relation (49). The whole energy content is,
however, the sum Wh +Wout. Hereafter we refer to energy Wh as the “hidden
energy” and to energy Wout as the “outer-region energy”. In the Newtonian
physics, we have only a single concept of energy. The “energy” and “rest en-
ergy” are not distinguished. At the same time, there is no hidden energy. The
hidden energy is another kind of energy, which should be recognized in GR.

In GR, there has been sometimes considered the “mass within the sphere of
radius r”. This kind of mass should be abolished. It the context of our analysis,
it seems reasonable to consider only a “mass between the spheres of radii rz and
r”.

We note that the hidden energy is significant only in the truly relativistic
objects, which cause a significant curving of space-time. In the non-relativistic
objects, GR alone (without any postulate) implies Rin → 0 and, consequently,
Wh → 0. One can illustrate this fact by the model of the Sun, which is not very
relativistic object. Here, we present only a simple model constructed by using of
the equation of state, which is a combination of the polytrope and the equation
state of radiation - see relations (20) and (22). We considered the polytrope to
be index equal to 3.
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Figure 5. The behavior of the material density, ρ(r), in the Sun’s interior according to

its polytrope model described in Sect. 5.3 (the red curve). The corresponding behavior

in the model constructed by using the Newton gravitational law is also shown (the

green curve).
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To obtain the minimum energy configuration of the solar body (the mini-
mum energy configuration of RCO is discussed more in Sect. 5.4), we construct
a series of models by varying the zero-gravity distance, ro. Further, the mass
of the object in the model must be equal to 1M⊙. To achieve this mass, we
considered the fixed maximum temperature and varied the maximum pressure
(both quantities reach their maximum at the distance ro). Other possibility is
to fix the maximum pressure and vary the maximum temperature. However, it
appears that the resulting model is almost the same in both cases. The maxi-
mum temperature and pressure as well as the chemical composition of the Sun
were taken from the standard solar model by Turck-Chieze et al. (1988) (their
reference model).

The behavior of the material density inside the Sun’s model is shown in Fig. 5
(the red curve). For the sake of a comparison, the polytrope model of the Sun
constructed by the Newton gravitational law is also shown (the green curve). We
can see that the models are identical in a prevailing volume of the solar body.
A difference occurs in a very small volume, in the central region. Specifically,
Rin ∼ 10−4 m (but density, ρ equals 10−5ρmax already in r = 218 km), ro =
1.6 · 104 km, and Rout = 5.239 · 105 km. The hidden mass (Wh/c

2) equals only
0.0014M⊙.

5.4. Minimum energy configuration of RCO

If an RCO possesses not only an outer surface, but an inner surface and a non-
zero zero-gravity distance as well, then there is one more degree of freedom.
It is, thus, reasonable to ask what a configuration will be acquired. For a set
of particles constituting a given RCO, it will obviously be the configuration at
which the object has the minimum energy.

Assuming that an RCO consists of η neutrons, its rest mass equalsMo = ηmn

regardless the configuration acquired. So, let us construct a series of models for
the RCO with the rest mass equal to Mo = 5M⊙, for example. No relation
between the Fermi impulse in a starting point of numerical integration and the
rest mass of the RCO is known. The required rest mass can be achieved via an
iteration, when we vary the input value of the impulse in the starting point. The
individual models in the series differ by their zero-gravity distance, ro. When
this distance is given, then the inner and outer radii of RCO are yielded by
modeling.

Having the series of the models, we can investigate the dependence of the
RCO’s total energy on the zero-gravity distance (Neslušan, 2019). The depen-
dence is shown in Fig. 6 in our example. Actually, there is a model of RCO with
the minimum energy, for ro

.
= 25 km. So, the object will tend to acquire the

configuration with this value of ro. The RCOs with M < Mo (those below the
cyan horizontal line in Fig. 6) obey the binding energy condition for a stable
configuration (see Sect. 6.1), the minimum energy configuration including.
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Figure 6. The dependence of total energy, W , in term of mass, M = W/c2, on the zero

gravity distance, ro, for a series of RCO models, all with the rest mass Mo = 5M⊙. The

RCO with the minimum total energy is shown with the green circle (around the red

full circle). The zero-gravity distance of this RCO is ro = 25 km. The cyan horizontal

line separates the solutions obeying the binding-energy condition of stability (below

the line) from those being in the unstable equilibrium configuration (above the line).

On the contrary, the objects with M > Mo are in an unstable equilibrium
configuration. Since the total energy decreases with the increasing ro in the
region of instability, these objects should expand after a perturbation occurs.
We constructed the M = M(ro) dependence for many values of the rest mass;
except for the example for Mo = 5M⊙ presented here, five other examples were
presented in our previous paper (see Fig. 5 in Neslušan, 2019). The minimum of
the function M = M(ro) always occurred in the region of the stable-equilibrium
configuration.

In Fig. 6, we can observe a steep increase of the energy when ro → 0. It
means that the fulfilled-sphere configuration is highly unstable.

The dependence of the outer radius, Rout, on the zero-gravity distance, ro,
for various configurations of RCO with the same rest mass in the context of
the RCO’s event horizon is shown in Fig. 7. (In the figure, the example of RCO
with the rest mass of 5M⊙ is presented.) We can see that the outer radius
approaches the gravitational radius (the purple curve) when the zero-gravity
distance decreases to small values (in the small window showing the detail, the
purple curve seems to approach, asymptotically, the blue one). However, when
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ro for the 5M⊙-RCO is shown with the purple crosses. In the small window showing

a detail at the smallest radii and ro, the points resulting from the discrete models are

connected with the curve of the corresponding color to demonstrate the approach of

the outer radius to the gravitational radius when ro → 0.

ro → 0 then the energy of the object increases as seen in Fig. 6. This fact is even
more transparent in Fig. 8 showing the dependence of the difference between the
outer RCO radius and the radius of the event horizon on the total energy of the
object. We see that the outer radius decreases to reach the event horizon with
the increasing energy. In other words, the dependence indicates that a collapse
of the object to a black hole requires the delivery of a huge, possibly infinite,
amount of energy.

Unfortunately, no analytical, even an analytical static, general solution of
the EFEs describing a realistic RCO is known (except for the solution for a
photon sphere; see Sect. 7.3), therefore it is impossible to answer the question
whether the energy required for a collapse is finite or infinite. At the moment, we
have only the indication that some energy is needed. The definitive conclusion
on the required energy could be drawn if we knew the analytical solution (the
dynamical case) of the EFEs describing the collapse.



76 L.Neslušan
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Figure 8. The dependence of the difference between the outer radius of a neutron star,

Rout and radius of its event horizon, equal to 2uout, on the total energy, W , given in

term of the corresponding mass, M = W/c2. Here, the example of the star with the rest

mass Mo = 5M⊙ is considered; the blue circles correspond to the individual models

of RCO with this rest mass.

5.5. On the maximum mass of RCO

In their pioneering work, Oppenheimer & Volkoff (1939) concluded that the
mass of a stable neutron star cannot exceed a certain limit. Today, this limit
is known as the Oppenheimer-Volkoff upper-mass limit. We know that these
authors considered the objects in the shape of the fulfilled sphere. In this section,
let us investigate if there is also a constraint on the mass of RCO in the shape
of a hollow-sphere.

In Fig. 9, there is shown the dependence of RCO mass on the maximum (in
ro) Fermi impulse, pF , for several values of the zero-gravity distance. In panel
(a) of the figure, the black solid curve shows the dependence for ro = 100m.
The analogous curves for a smaller value of ro could not be distinguished in
the resolution of the figure, in the interval of reasonable values of pF (∼0.1
to ∼2mnc), from the black curve for ro = 100m. The behavior is practically
the same for any value of ro < 100m, also for ro → 0. Hence, the black curve
shown in Fig. 9a corresponds to the curve published by Oppenheimer & Volkoff
(1939) in their Figure 1. (These authors plotted the dependence of mass on a
quantity that corresponded with the maximum Fermi impulse by a complicated,
unclear, way. They presented only the part of the curve comprehending the
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Figure 9. The dependence of the RCO mass, M , and the rest mass, Mo, on the

maximum Fermi impulse, pF , for several values of the RCO’s zero-gravity distance, ro
(panel a). The thick solid curve of a given color shows the dependence of the mass and

the dotted curve of the same color shows the dependence of the rest mass for the given

ro. In the intervals of pF with Mo > M (the dotted curve is above the corresponding

solid curve), the RCO is in the stable-equilibrium configuration. In panel (b), there

is the corresponding dependence of Newtonian mass Mout on pF . The intervals of pF
where the RCOs are in the stable-equilibrium configuration are shown with a solid

curve, the unstable-equilibrium RCO configurations are shown with a dashed curve.
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models with a relatively small maximum Fermi impulse.) As seen, the curve has
a local maximum at pF ≈ 0.8mnc. This fact has been the main argument for
an existence of the upper-mass limit of neutron stars.

The green solid curve in Fig. 9a shows the dependence for ro = 500m. In
the interval of pF from a very small value (we created the models starting with
pF = 0.1mnc) to ∼2mnc, it is situated only slightly above the black curve for
ro = 100m, since there is no significant difference in the behavior for a small ro as
we mentioned. All curves for a small ro have a local maximum, at pF ≈ 0.8mnc
or a slightly larger value of pF . However, if the dependence is constructed for
ro

.
= 1.2 km (the red solid curve), then there is no maximum; only an inflection

point at pF ≈ 1.1mnc. If ro > 1.2 km, then the mass permanently increases with
increasing pF (the cyan curve for ro = 2km and the purple one for ro = 3km
in the examples shown in Fig. 9a).

The real objects must be in the stable equilibrium configuration, i.e.M < Mo

according to the binding energy condition of stability (Sect. 6.1). In Fig. 9a, the
dependence of the rest mass, Mo, on the maximum Fermi impulse, pF , is shown
with a dotted curve of the same color as the dependence M = M(pF ) for a given
ro. The intervals of the stable equilibrium RCO configuration are those where
the dotted curve is above the solid curve of a given color. We can see that the
intervals of the stability range from a small pF beyond the local maximum or
beyond the point of smallest derivative in respect to pF of each curve.

Let us now deal, again, with the modeled RCOs with ro < 1.2 km. If we
consider only the part of the dependence of mass on the maximum impulse,
which is terminated before the curve reaches its local minimum (as Oppenheimer
& Volkoff (1939) did), it seems that the previous maximum, at pF ≈ 0.8mnc,
is the absolute maximum. However, as shown in Fig. 9a, a continuation of the
dependence to large values of pF reveals that there is a local minimum (at
pF ≈ 3.5mnc in the case of ro = 100m and at pF ≈ 2.5mnc when ro = 500m)
and mass again increases for a larger pF -values. Of course, the behavior of the
M = M(pF ) dependence in the region of extreme values of pF is irrelevant to
real objects because of two reasons. First, the RCOs would be in an unstable
equilibrium configuration (the black dotted or green dotted curves are below
the black solid or green solid curve, respectively). Second, the extreme impulse
pF implies such a huge energy of neutrons that we can expect transmutations
of the particles and, consequently, the considered EoS would no longer be valid.
Hence, the continuation of the M = M(pF ) dependence is interesting only from
the point of view of mathematics.

If we deal with the RCOs in the shape of a hollow sphere, the mass corre-
sponding to the outer-region energy is the quantity we measure in observations,
as we already mentioned at the end of Sect. 4.3. The dependence of the mea-
sured outer-region - or Newtonian - mass, Mout, on the maximum Fermi impulse
is shown in Fig. 9b, again for several values of ro. The part of the dependence
in the region of stable equilibrium is shown with a solid line (a continuation to



Outward oriented gravity in a central region of a relativistic object 79

the region of the unstable equilibrium is shown with a dashed line). One can see
that the maximum Mout in the regions of stability increases with increasing ro.

When one constructs the dependence Mout = Mout(pF ) for a large enough
value of ro, there is an indication that Mout (the measured “mass”) can, most
probably, increase up to an arbitrarily large value. Without an analytical solu-
tion, we cannot prove if an increase above all limits is actually possible. Anyway,
even if there is a maximum value of Mout, this value is, obviously, much larger
for the hollow-sphere than the fulfilled-sphere RCO. In Fig. 9b, the maximum
Mout of the stable RCO with ro = 6km (the orange solid curve) is 1.49M⊙. If we
search for the maximum in the series of RCO models for a larger ro, for ro = 10,
15, 20, or 25 km for example (these results are not shown in Fig. 9b because of its
better transparency), then the maximum Mout of RCO in the stable-equilibrium
configuration Mout = 2.14, 2.62, 3.18, or 3.39M⊙, respectively.

6. Condition of hollow-sphere-RCO stability and other con-

ditions

6.1. Binding-energy criterion of RCO stability

EFEs (2)−(5) or those in form (9), (10), and (16) give a static solution for
a RCO, therefore every RCO described by a solution of these equations must
be in a balanced configuration. However, the RCO equilibrium can be stable
or unstable. We are, of course, interested in the models of RCO in the stable
equilibrium configuration. An RCO is in the stable equilibrium, if its binding
energy is positive (Tooper, 1965), i.e.

Wb.e. = Wo −W > 0. (50)

In the example of a neutron star presented in Sect. 4, the binding energy condi-
tion is obeyed because Mc2 < Moc

2 (M = 4.97457M⊙ and Mo = 5.00000M⊙).
We remind that Wo and W are the rest energy and total energy of RCO, re-
spectively. The rest energy is

Wo = Moc
2 = 4πm̄

∫ Rout

Rin

nr2eλ/2 dr =

= 4π

∫ Rout

Rin

ρr2
√

1− 2u
r

dr. (51)

The symbol m̄ stands for the mean mass and n is the number density of the
RCO-constituting particles.

When condition (50) is applied, it is implicitly assumed that the generation
of thermal energy in nuclear reactions is negligible, i.e. Wo is constant, and
also the energy of radiation is negligible. However, the energy of radiation is
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sometimes a significant or dominant type of energy, so far, therefore we have to
modify the condition for the stable equilibrium given by inequality (50).

The modification is necessary, since the energy of the radiation of a RCO
in thermal equilibrium cannot be converted into the kinetic type energy of gas
particles; there is no contribution of energy from the radiation helping these
particles to overcome the RCO’s potential barrier. The radiation tends to be in
the thermodynamic equilibrium with the gas (plasma). Some radiation energy
could be delivered to the gas (causing an increase of its energy and, hence,
temperature) only if the temperature of radiation decreased, but this would
contradict the second law of thermodynamics. Therefore, when the energy of
radiation is significant, the binding energy should be calculated as

Wb.e. = Wo −Wg, (52)

where Wg = W − Wr is the total energy reduced by the energy of radiation,
Wr.

We note that Tooper’s binding-energy criterion for stability was abandoned
in the works published in the last decades. The stability has been mostly eval-
uated performing the perturbation analyses. The reason of why the binding-
energy criterion was abandoned has never been given, however. The condition
(50) or (52) should be the primary condition of stability. If it is not obeyed,
the object cannot be stable. Namely, if there is enough energy to overcome the
gravitational potential of an object, the object must expand. We can compare
this to the celestial-mechanics problem of two bodies the integral of their energy
is positive. Then, we cannot say that one object remains in a bound, elliptical,
orbit around the other. It must move in the unbound, hyperbolic, orbit.

6.2. Other conditions to describe a real object

To create a model relevant to a realistic RCO, several conditions in addition
to the binding-energy condition were published by various authors. In this sec-
tion, we discuss some of these conditions, as summarized by Ivanov (2017) and
recently discussed by Hernández et al. (2021). Some of the conditions are, how-
ever, relevant only to the RCO in the shape of the fulfilled sphere, therefore we
omit them in this section, but are discussed in Sects. 4.4, 4.5, and 7.

Except for the demand on the positive binding energy, the following condi-
tions for an isotropic RCO should be mentioned.

(1) Components of the metric tensor, eλ and eν , are positive, finite, and free
from any singularity within the matter distribution.

(2) At the surfaces of the RCO, the RCO-body solution for the compo-
nents of the metric tensor should match continuously their counterparts in the
OSM. In other words, the components of the RCO-body metric tensor and their
derivatives in respect to r should equal to the corresponding components and
their derivatives in the OSM at both RCO surfaces. In the case of the spher-
ically symmetric RCO, having non-zero only the diagonal components of the
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metric tensor, the spatial transversal components, gϑϑ and gϕϕ, are identical
in the RCO-body metrics and OSM, therefore their matching is obvious. There
is also the match of the grr component and its derivative due to the intrinsic
consistency of GR.

However, the gtt component is not present in the EFEs; there is only the
derivative of the auxiliary function ν. Hence, gtt is not uniquely determined by
the EFEs and its tailoring deserves an attention. The fact that the derivative
dν/dr can be found solving the EFEs means that the behavior of ν, as a function
of the distance r, is given, but there is an unknown integration constant, νK ,
which can be added to the function ν = ν(r) at every r.

The value of the constant νK suitable for the tailoring can be found either
in an iteration or in the following way. We start the numerical integration with
an arbitrary initial value, νa, of the function ν and perform the integration to
the outer radius, Rout. The integration yields a value of ν, which we denote
νRa, at Rout. At the same time, the integration yields the value, uout, of the
function u at Rout, therefore we can calculate the relevant gtt component in
the OSM in Rout: gtt(Rout) = 1 − 2uout/Rout. The corresponding ν equals
νOSM = ln(1− 2uout/Rout). Obviously, constant νK = νOSM − νRa. The initial
value of ν suitable for the tailoring, which we denote by νb, is equal to νa + νK ,
explicitly

νb = νa + ln

(

1− 2uout

Rout

)

− νRa. (53)

We implicitly assumed the calibration Kν,o = 1 in the calculation of νb. If the
integration is repeated, whereby νb is used as the input, it yields the behavior
of gtt which can be tailored to its OSM counterpart at Rout.

(3) The pressure should vanish at the surfaces, except for radiation pressure.
(We consider the isotropic solution, therefore we do not distinguish between the
radial and tangential components of the pressure.) We require, in addition, the
material density should vanish at the RCO surfaces.

(4) The energy density and pressure should be positive inside the RCO body.
For the energy density this demand coincides with the null energy condition.
If both pressure and energy density are positive in the RCO’s body, then all
energy conditions, except for the dominant and strong (see the next item), are
obeyed.

(5) The dominant energy condition should be satisfied, i.e. E ≥ P , anywhere
inside the RCO body. It is desirable that even the strong energy condition is
satisfied. This condition requires E ≥ 3P .

(6) The causality condition should be satisfied. It says that the speed of
sound should not surpass the speed of light, or 0 < dP/dE ≤ 1.

(7) The adiabatic index, Γ = [(E + P )/P ]dP/dE, which is the ratio of two
specific heats, should be Γ ≥ 4/3.

(8) The distribution of mass obeys the principle of minimum action. The
total energy of RCO is minimal possible energy for the set of particles of gas
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constituting the object.

We found that, for a reasonable EoS, all these conditions are obeyed for
a large variety of RCOs. Condition (1) is satisfied for every real-values λ and
ν and these quantities are real-valued if all components of the metric tensor
are real. For several EoSs we also proved that the behavior of all quantities in
the RCO body is continuous, without any singularity. As well, it is possible to
prove, for the specific EoSs, that there are always the inner and outer surfaces
in which the material density vanishes and the OSM can be smoothly tailored
to the metrics of the RCO-body.

If the EoS for radiation or a polytrope with radiation is considered, then
the energy density and pressure are non-zero down to the exact center of the
object and up to the infinite distance from it. However, even in the case of a
radiation sphere, there is a steep decrease of the pressure and energy density
in two finite object-centric distances. The first can be regarded as inner and
the second as the outer physical surface. Below the inner and above the outer
surface the metrics can be well approximated with the OSM (an example can
be found in (Neslušan, 2017b) or (Neslušan, 2017a)). Thus, conditions (2) and
(3) are obeyed, practically.

The reasonable EoS, i.e. the EoS to describe a real object, contains only the
positive energy density and pressure, therefore the obeying of condition (4) is
obvious. For the EoS given by relations (13)−(15), we can show that

E = 3P +
m4

nc
5

4π2h̄3

∞
∑

j=1

1

(2j + 1)!

(τ

2

)2j+1

. (54)

Hence, E ≥ 3P for τ ≥ 0, which is always the case. Therefore, condition (5), i.e.
the dominant as well as strong energy conditions, are obeyed. The conditions are
also obeyed for the EoS of radiation, E = 3P , and EoS in the form of a polytrope
(relations (19) and (20)) when the polytrope index N ≥ 1 (the dominant energy
condition) or N ≥ 3 (both dominant and strong energy conditions).

Causality condition (6) is also obeyed for all the three above mentioned EoSs.
For EoS (14) and (15), we can show that

dP

dE
=

1

3

cosh τ
2 − 1

cosh τ
2 + 1

. (55)

For any positive τ , it is therefore valid dP/dE > 0 and dP/dE approaches 1/3
when τ acquires large values. When τ → 0, then dP/dE → 0. If E = 3P , then
dP/dE = 1/3. For the polytrope, one can find

dP

dE
=

1

N

(N + 1)KP ρ
1/N

(N + 1)KP ρ1/N + c2
, (56)

therefore dP/dE < 1 for ρ > 0 if N ≥ 1.
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In the case of EoS (14) and (15), the adiabatic index, Γ, is larger that 4/3 and
condition (7) is obeyed for large values of the Fermi impulse, pF , and approaches
4/3 when pF decreases to zero. If the EoS is E = 3P , then Γ = 4/3. For the
polytrope, Γ = 1 + 1/N , therefore condition (7) is obeyed for N ≤ 3.

Concerning condition (8), we found that it can be obeyed (there is a mini-
mum of the function M = M(ro)) for the EoS of the cool, degenerated, Fermi-
Dirac gas characterized with relations (14) and (15). We further found that it
is also obeyed for polytrope (19) and (20), as well as the EoS which is the com-
bination of the polytrope and EoS for radiation, E = 3P . On the contrary, no
minimum of the function M = M(ro) was found for the EoS of the degenerated
ion-electron gas, i.e. for the gas constituting the white-dwarf stars.

7. A confrontation of two concepts of RCO

In this section, we discuss the traditional fulfilled-sphere concept versus the new
hollow-sphere concept of RCO.

7.1. On the requirement of the regularity of metrics

When a relativistic star or other object generating a strong gravity is modeled,
it is demanded, among other things, that the metrics should be regular at the
origin. The demand of regularity was specified by, e.g., Misner et al. (2017) (in
their paragraph 23.5) who calculated the mass inside the radius r,

Mr(r) =

∫ r

0

4πr2E dr +Mr(0), (57)

and argued that the constant of integration Mr(0) must be zero. The first prob-
lem with Eq.(57) is the lower limit of the integration. It has always been assumed
to be zero, but the question why it is zero has never been answered. This ques-
tion is non-trivial in the GR. The zero lower limit means that the distribution of
matter in the RCO is implicitly assumed to extend to its proper center. However,
it means that the distribution is assumed, not proved.

According to the authors requiring the regularity of the metrics at the origin,
the demand Mr(0) = 0, implying a space geometry that is smooth at the origin,
is physically acceptable in contrast to a non-zero value, which means a geometry
with a singularity at the origin and is physically unacceptable.

However, can the demanded equalityMr(0) = 0 be achieved within GR? This
demand has never been proved to be possible. On the contrary, the equation
of geodesic implies the relativistic term of the gravitational acceleration, which
cannot be zero for an RCO of a non-zero mass and which implies that the
outer layers of the RCO attract the layers below them outward from the RCO
center. It is possible (although this has been proved neither) that there is always
a finite RCO-centric distance, below which the net gravity of the outer layers
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dominates over the downward oriented gravitational action of lower layers. Thus,
there should necessarily occur, at the RCO consisting of a compressible fluid,
an inner physical surface and the function M(r) is zero at a finite object-centric
distance. The demand Mr(0) = 0 can, paradoxically, be surely obeyed only after
GR is ignored at a region around the RCO center.

The matter inside the RCO could be distributed down to its center, if we
completed the demand Mr(0) = 0 with another demand that every RCO must
consists either of an incompressible fluid or a solid material. In the case of solid
material, the stress-energy tensor (7) is irrelevant and no else stress-energy ten-
sor was considered. The demand of incomprehensibility would also be problem-
atic, especially for the super-massive RCOs. Penrose (1969) pointed out that
the mean density of an RCO decreases with its mass. An estimate of the mean
density can be done in the following way.

Let us define the “compactness” of RCO, ζ, as the ratio of the gravitational
Schwarzschild and outer-surface radii, i.e. ζ = Rg/Rout. The mean density, 〈ρ〉,
of the fulfilled-sphere RCO with the mass M equals 〈ρ〉 = 3M/(4πR3

out). Let us
consider two RCOs with masses M1 and M2, which have the same compactness,
i.e. there is valid Rg1/Rout1 = Rg2/Rout2. From the latter,

Rout2 =
M2Rout1

M1
. (58)

If one calculates the ratio of mean densities of both aforementioned RCOs,
he or she obtains

〈ρ〉2
〈ρ〉1

=
3M2

4πR3
out2

(

3M1

4πR3
out1

)−1

=
M2

M1

(

Rout1

Rout2

)3

. (59)

When the outer radius of the second RCO, Rout2, is expressed by relation (58),
the ratio of the mean densities equals

〈ρ〉2
〈ρ〉1

=
M2

1

M2
2

. (60)

It means, the mean density of RCO, being in the form of a fulfilled sphere, is
reciprocally proportional to its mass squared. For example, if the mean density
of a neutron star having the mass of order of 100 M⊙ is ∼1017 kgm−3, then
the mean density of a super-massive RCO with the mass of order of magnitude
109 M⊙ is 18 orders of magnitude smaller than the mean density of the neutron
star, i.e. it equals about 10−1 kgm−3. It is even smaller than the density of the
Earth’s atmosphere at the Earth’s surface. This indicates that the regions of
RCO with a relative small material density rather consist of a common gas than
an incomprehensible matter or solid matter.

Misner et al. (2017) were right that there is a singularity at r = 0 ifM(0) 6= 0.
However, this singularity does not seem to be problematic as we argued in
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Sect. 4.5. It is of the Big-Bang type and, therefore, an acceptable singularity
and, until it exists, it cannot be visited, in principle, by any particle or object
(observer). It can thus be regarded as a point of space-time not belonging to
our universe.

7.2. One or two degrees of freedom?

When one demands the distribution of RCO matter down to its center, he or
she arbitrarily cancels one degree of freedom. While the hollow-sphere RCO
can acquire (i) a various zero-gravity distance, ro, and (ii) a various thickness,
i.e. difference Rout −Rin, the fulfilled-sphere RCO can have only various outer
radius. From the point of view of GR, it is not clear what keeps the matter of
the fulfilled-sphere RCO distributed down to its center. If one wants to create a
model of the fulfilled-sphere RCO, he or she must ignore the second, relativistic,
term of acceleration (29) when they determine the action of upper material layers
onto the lower layers. It means that the relativistic acceleration is replaced in
this case by its Newtonian counterpart, in fact. In the past, this replacement
has escaped the experts’ attention, since it has always been assumed implicitly.
Or, the researchers kept in their minds the postulate of the Minkowski metrics
inside the spherical shell.

When the stability of fulfilled-sphere neutron stars was proved via various
perturbation analyses, it was likely just the ignorance of the relativistic term of
acceleration causing a positive result. If the second degree of freedom is taken
into account, then the fulfilled-sphere RCO (or RCO with a very small ro) is
highly unstable according to the binding-energy criterion.

7.3. Does a solution for the fulfilled-sphere RCO exist?

The question in the title of this sub-section could be answered if the analytical
solutions of the EFE for the realistic EoS were known. Then, the problem of a
fulfilled-sphere versus hollow-sphere concept of RCO could be solved. Unfortu-
nately, an analytical solution of the EFEs is known only for one realistic EoS,
the EoS of radiation E = 3P , i.e. a photon sphere.2 If one considers, for ex-
ample, the polytrope or the mixture of polytrope and radiation, one has to use
numerical methods (Stephani et al., 2009, p. 250). In the following, we describe
an indication of the answer at least in the case of the photon sphere.

For the EoS of E = 3P , the analytical solution was found by Hajj-Boutros
(1989) in the form of the elliptic integral of the first kind. To reveal whether
the solution for the RCO in the form of a fulfilled sphere exists, we however
need only some simpler relations, which occurred as an intermediate result in
Hajj-Boutros’ derivation.

2We speak here about the realistic EoS in sense that this equation gives the relation between
the pressure and energy density of a real entity (radiation).
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In his work, the author used the isotropic coordinates with the auxiliary
metric functions µ = µ(r) and ν = ν(r). The line element in these coordinates
is defined as

ds2 = −eµ(dr2 + r2 dϑ2 + r2 sin2 ϑ dϕ2) + eν c2dt2 (61)

and the analogs of EFEs (2), (3), and (5) with the components of the stress-
energy tensor given by matrix (7) are

κP = e−µ

(

µ′2

4
+

µ′ν′

2
+

µ′ + ν′

r

)

, (62)

κP = e−µ

(

µ′′

2
+

ν′′

2
+

ν′2

4
+

µ′ + ν′

2r

)

, (63)

κE = e−µ

(

µ′′ +
µ′2

4
+

2µ′

r

)

. (64)

Eq.(12) remains valid for the isotropic coordinates in the unchanged form.
Hajj-Boutros (1989) suggested to change the variable r:

ξ = ln r. (65)

In agreement with this author, we use a dot (double dot) to denote the derivative
(second derivative) in respect to the new variable, ξ. One easily obtains µ′ =
e−ξµ̇, ν′ = e−ξ ν̇, µ′′ = e−2ξ(µ̈ − µ̇), and ν′′ = e−2ξ(ν̈ − ν̇). Subsequently,
Eqs.(62)−(64) can be re-written, for E = 3P , as

S =
1

4
µ̇2 +

1

2
µ̇ν̇ + µ̇+ ν̇, (66)

S =
1

2
µ̈+

1

2
ν̈ +

1

4
ν̇2, (67)

3S = µ̈+
1

4
µ̇2 + µ̇, (68)

where we denoted S = κPeµe2ξ.
Hajj-Boutros derived relations

ν̇2 = A sinh(ν + α)− 2, (69)

µ = −2ξ − ν − 2 ln(ν̇) + C1, (70)

where A, α, and C1 are the integration constants. The last relation can be
re-written as

ν̇2 =
Cµ

r2
e−µ−ν , (71)
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where Cµ = eC1 is another constant. Comparing (69) and (71) and after some
algebraic handling, we obtain

A sinh(ν + α)− 2 =
Cµe

−µ−ν

r2
. (72)

Eq.(12) can be integrated (Tolman & Ehrenfest, 1930) and we obtain

P = Poe
−2ν , (73)

where Po is an integration constant corresponding with the maximum pressure.

From the latter, e−ν =
√

P
Po

. This relation enables the replacement of the

quantity ν with pressure, P , in Eq.(72), i.e.

A

2
eα

√

Po

P
− A

2
e−α

√

P

Po
− 2 =

Cµe
−µ

r2

√

P

Po
. (74)

Using notation B = eα
√
Po and C2 = eαCµ, the last equation can be changed

to the quadratic equation of the variable P ,

âP 2 + b̂P + ĉ = 0, (75)

with coefficients
â =

(

Ar2 + 2C2e
−µ

)2
, (76)

b̂ = −2B2
(

A2r2 + 8r2 + 2AC2e
−µ

)

r2, (77)

ĉ = A2B4r4. (78)

Now, we can investigate the behavior of the pressure and, at the same time,
energy density (since E = 3P ) in the center of RCO. The regularity of metrics
in the center requires that the grr component of the metric tensor, which equals
eµ in the isotropic coordinates, must acquire a finite value. If eµ is finite then
â → 4C2

2e
−2µ, b̂ → 0, and ĉ → 0 for r → 0 and the roots of Eq.(75) are

P |1,2 =
−b̂±

√

b̂2 − 4âĉ

2â
→ 0. (79)

Hence, our analysis results in the conclusion that a stable relativistic photon
sphere cannot possess a form of the fulfilled sphere; the pressure and energy
density in its center are falling to zero.

Of course, we still do not know the behavior of the pressure and energy
density in the center of RCO consisting of a gas described with the realistic
EoS, as the polytrope, or EoS of the cool, degenerated, Fermi gas, or other, more
sophisticated EoS. However, the above-mentioned conclusion indicates that the
fulfilled-sphere configuration of RCO is not obvious.
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7.4. Remarks about the concept of black hole

At the hollow-sphere RCO, we cannot avoid the singularity in its center. How-
ever, we cannot either avoid a singularity at the fulfilled-sphere RCO, those with
the mass above the Oppenheimer-Volkoff limit. For a very massive object, we
have to accept their collapse and singularity at the event horizon. The experts
attempted to demonstrate that the singularity at the distance r = Rg (i.e. at the
event horizon) is just a coordinate artifact. Several coordinate transformations
with no singularity in any component of the metric tensor were found and this
was used as the argument.

However, GR is based, except of other, on the principle that the line ele-
ment is invariant under any transformation within this theory. Therefore, if the
line element, ds, in one coordinate system contains a singular point, the line
element ds′ in every other (“dashed”) coordinate system must also contain the
corresponding singular point. It means that the singularity cannot be removed,
in principle.

One can demonstrate the fact that there is always valid that ds2 = ds′2 in
the case of, e.g., the Kruskal-Szekeres coordinates which are well known to be
used in the incorrect proving that r = Rg is not a genuine singularity. In these
coordinates, new variables X and T are defined as

X =

√

r

Rg
− 1 er/(2Rg) cosh

(

ct

2Rg

)

, (80)

T =

√

r

Rg
− 1 er/(2Rg) sinh

(

ct

2Rg

)

, (81)

in the region above the event horizon. (In the region below the event horizon,
variables X and T are defined by the similar relations. Considering them, the
same conclusion as we draw below can be derived.) The line element squared,
ds′2, in the new coordinates can be given as

ds′2 =
4R3

g

r
e−r/Rg

(

dX2 − dT 2
)

+ r2dϑ2 + r2 sin2 ϑdϕ2 (82)

(the +++− signature is used, here). Actually, there is no singular point at any
distance r > 0 in forms (4R3

g/r)e
−r/Rg , r2, or r2 sin2 ϑ.

When we, however, calculate the differential dX2 − dT 2 squared, we obtain

dX2 − dT 2 =
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We see that dX2 − dT 2 → ∞ and, then, ds′2 → ∞ for r → Rg. The singular-
ity does not disappear in the new (dashed) coordinate system. In addition, the
differential of any quantity should acquire an infinitesimally small value. Other-
wise, one basic assumption of the differential calculus is violated. It means that
the Kruskal-Szekeres coordinates should never be used in the vicinity of Rg.

The collapse of very massive fulfilled-sphere RCOs below their event hori-
zon was not accepted by some GR experts. It is well known that Einstein and
Eddington were reluctant to the concept of a black hole. Concerning this ob-
ject, Eddington wrote (Chandrasekhar, 1972): “Chandrasekhar shows that a star
of mass greater than a certain limit remains a perfect gas and can never cool
down. The star has to go on radiating and radiating and contracting and con-
tracting until, I suppose, it gets down to a few kilometers’ radius when gravity
becomes strong enough to hold the radiation and the star can at least find peace.
I felt driven to the conclusion that this was almost a reductio ad absurdum of
the relativistic degeneracy formula. Various accidents may intervene to save the
star, but I want more protection than that. I think that there should be a law of
Nature to prevent the star from behaving in this absurd way.” Our result indi-
cates that Eddington could be right. There actually exists the “law of Nature”
which can prevent the star from an infinite collapse. It is the relativistic gravity
itself. Deeply inside the compact object, there appears such a position of the
mass center of the dominant-gravity matter that the net gravitational attraction
becomes oriented outward from the object’s center.

In Sect. 5.4 we stated that we do not known, at the moment, whether the en-
ergy needed for the gravitational collapse is finite or infinite. If this energy were
finite, then black holes would be possible, although not necessary, a final stage
of very massive objects without the internal energy source. If the energy were
infinite, the black holes would be energetically forbidden and, thus, impossible
as Eddington claimed.

The skepticism concerning the black-hole concept seems to be in a contra-
diction with the claims of some experts who said the collapse of a very massive
object below its event horizon was proved in the papers by Oppenheimer &
Volkoff (1939) and Oppenheimer & Snyder (1939). A detailed inspection of the
first paper however reveals that Oppenheimer and Volkoff discovered that there
is no solution of the EFEs for a stable neutron star with the mass exceeding
the upper mass limit. In their era, there existed the models of stars and planets
within the Newtonian gravity which was oriented toward the center throughout
the whole body of object. It is therefore not very surprising that they assumed
a collapse of an unstable object.

In their paper, Oppenheimer and Snyder considered the previous conclusion
drawn by Oppenheimer and Volkoff that a massive compact object had nec-
essarily to collapse and, based on this conclusion, they described the collapse
when the gradient of pressure to resist the gravitational attraction is negligi-
ble. Their work cannot be a proof of the collapse since such a proof can only
be done when one evaluates both the strength of the gravitational attraction
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and oppositely acting gradient of pressure and demonstrates that the gravity is
dominant (Neslušan, 2019). But the gradient of pressure was not evaluated by
the authors.

It is worth noting that the non-existence of black holes would not be in a
disagreement with observations. Murk (2022) studied the observability of the
black holes and argued that “identifying the observed astrophysical black hole
candidates as genuine black holes is not justified based on the currently available
observational data”. Actually, it is necessary to realize that various phenomena,
which are today ascribed to the black holes, occur due to a strongly curved
space-time in the vicinity of compact objects. However, such the space-time
can also be configured by a dark RCO, which is not collapsed below its event
horizon.

8. Conclusions

In our paper, we demonstrated of how GR works, indeed, in the astrophysics of
the RCOs. The particular conclusions follows.

(1) The formula to calculate a gravitational acceleration consists, basically,
of two terms, Newtonian and relativistic. The relativistic term represents a
repulsive gravity which weakens the attractive Newtonian term in the region of
space above the event horizon.

(2) Due to the relativistic term in acceleration, there always occurs an out-
ward oriented gravitational action in the central region of a spherically symmet-
ric distribution of matter.

(3) In the RCOs with their mass smaller than the Oppenheimer-Volkoff mass
limit, the volume of the region of the outward oriented gravity can be arbitrarily
small. At the moment, we do not know if the volume of the region can be zero.
This circumstance enabled to postulate the metrics without a singularity in the
center of RCOs and, practically, create the models of RCOs in the form of (an
approximate) fulfilled sphere, with the matter distributed down to the RCO
center.

(4) The EFEs imply the RCOs, consisting of a compressible perfect fluid, in
the form of a hollow sphere. Inside such an RCO, there exists an RCO-centric
distance below which the metric quantity u, related to the grr component of
the metric tensor, is negative. The corresponding energy is, however, positive.
We named this energy as “hidden energy”. This kind of energy never occurs
within the Newtonian physics. It was found that its value can be several orders
of magnitude larger in the super-massive RCOs than the value of their energy
derived from the detectable Newtonian mass, which determines the acceleration
of the objects above the RCO’s outer surface.

(5) A model of a traditional, fulfilled-sphere RCO (or a quasi-fulfilled sphere
RCO in fact) can be constructed only with a mass smaller than the Oppenheimer-
Volkoff upper mass limit. Since no analytical solution of the EFEs exists to de-
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scribe a real RCO, it is unknown whether there is or is not a mass limit in the
case of hollow-sphere RCOs; if so, then this limit must be considerably larger
than the Oppenheimer-Volkoff limit.

(6) When it is postulated that any realistic RCO must be in the form of a
fulfilled sphere, then the essential part of the solutions of the EFEs is forbidden.
Due to this prohibition, there occurs the Oppenheimer-Volkoff upper mass limit
and scientists are forced to establish the concept of a black hole to describe a
final stage of more massive objects. Thus, the concept of a black hole is not
implied by GR, but it appeared, on the contrary, due to the prohibition of the
large, essential, part of this theory.

(7) To construct a model of RCO in the form of a fulfilled sphere, one
must cancel one degree of freedom; only the RCO outer radius is variable in
this case. He or she must, usually implicitly, assume a fictitious force keeping
the distribution of RCO matter down to its center. The hollow-sphere RCO
consisting of a given set of constituting particles can have a various zero-gravity
distance and thickness; thus, there are two degrees of freedom.

(8) The stable-equilibrium configuration of a hollow-sphere RCO consisting
of a given set of constituting particles occurs for a zero-gravity distance, which
is significantly larger than zero. If this distance decreases, the RCO’s total en-
ergy increases. If the zero-gravity distance is smaller than a certain limit, the
object is in an unstable-equilibrium configuration. If the zero-gravity distances
approaches zero, i.e. the hollow-sphere RCO is going to become the fulfilled-
sphere object, its energy is tremendous (possibly approaching infinity) and its
stability is very problematic.

(9) There is no singularity in the center of the fulfilled-sphere RCO. How-
ever, this smoothness of metrics is only postulated, at the moment. No solution
of the EFEs for a realistic EoS implying a non-singular central point has ever
been found. The singularity in the hollow-sphere-RCO center, i.e. in the cen-
ter of its internal vacuum void, is the Big-Bang type singularity; everything is
attracted away from the center. Hence, this singularity does not represent any
problem. (If the Big-Bang type singularity was not acceptable, the theory of
Big Bang would be incorrect.) Furthermore, this singularity is an abstract sin-
gularity, which exists in our description of the metrics in the vacuum void. In
principle, no material particle can ever enter the singularity until it exists. The
singularity is removed by an object with an energy comparable with the energy
of the RCO, when this object occurs in the void.

In conclusion, we should seriously consider the concept of the hollow-sphere
RCO with the outward oriented gravitational action and negative metric func-
tion u in its most central region. Although this concept includes a Big-Bang
type, abstract singularity in the center, it is completely consistent with GR. In
contrast to the hollow-sphere concept of RCO, the traditional, fulfilled-sphere
concept requires the ignorance of GR in the RCO’s central region.
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We demonstrated that no predicted property of the hollow-sphere RCO con-
tradicts the observations. On the contrary, it seems that such the concept can
help us to solve several astrophysical and cosmological problems. The existence
of the hollow-sphere RCO is predicted within the original GR, which is currently
not the main-stream theory in the astrophysics of the compact objects, because
of the postulated limitation. A discussion about the removal of the limitation
is strongly desirable. Likely, we do not need any new physics. We should only
use the whole extent of authentic, genuine, Einstein’s theory of general relativity.
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