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Abstract. The collapse of a spherically symmetric, self-gravitating, isother-
mal, protostellar cloud has been described in terms of hydrodynamics by sev-
eral authors. One of the solutions found provides initially flat behaviour of the
density in the cloud’s interior. (This specific interior herein is referred to as
"the central plateau”.) This paper gives an analytical solution - in the form
of a power series - of the equations of motion of a test point-like mass body,
located within the central plateau. The solution reducing computational time
can be useful in studying the dynamics of a huge number of bodies in a col-
lapsing protostellar cloud (in studying the dynamics of cometary nuclei in the
collapsing protosolar nebula, for example).
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1. Introduction

It is well known that cool interstellar clouds consist not only of gas, but also of
dust. The motion of the largest dust grains is obviously mechanical in contrast
to the chaotic - thermodynamic - motion of microscopic grains, molecules, and
atoms. Moreover, several authors are looking for the creation of cometary nuclei
in these clouds. Thus, it may become needed to study the mechanical motion of
a body in an interstellar cloud, especially in its dense regions, where protostars
form. One example of such a study is the proof of the author’s idea (Neslusan,
1994) that the nuclei of Qort cloud comets were created in an interstellar molec-
ular cloud, which fragmented, and one of its parts became the parent cloud of
the Solar System, i.e. protosolar nebula. To verify this idea, it is necessary to
study the dynamics of the nuclei in the collapsing protosolar nebula.

The hydrodynamic collapse of a spherical, isothermal, self-gravitating, pro-
tostellar cloud has most recently and most completely been described by Whit-
worth and Summers (1985). As opposed to previous authors (Penston, 1969;
Larson, 1969; Shu, 1977; Hunter, 1977), they found that there exists not a few
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discrete solutions, but a bounded two-parameter continuum of complete solu-
tions of this hydrodynamic problem. Respecting the initial distribution of den-
sity in the inner part of the cloud, the solutions can be generally divided into
three groups: (i) the cloud is centrally rarefied, (ii) the behaviour of the densi-
ty is flat, and (iii) the cloud is centrally peaked. The first group is unrealistic,
because the collapse of matter into a relatively empty space is improbable in na-
ture. Strongly centrally peaked solutions of the third group do not in fact solve
the problem of the collapse, because it is necessary to find the way a more or
less homogeneous interstellar medium becomes denser inside. Thus, the a priori
assumption of a strongly centrally peaked density avoids the problem we need
to solve. Hence, only the second group and the solutions of the third group with
a mildly centrally peaked density can be considered to be real in nature.

The second group in fact consists of just one solution. An important proper-
ty of this solution is the constancy of the density inside the infalling shock front
in the early era (before the shock front falls onto the cloud’s centre). Following
Bodenheimer and Sweigart (1968), we shall hereinafter call the region inside the
shock front the central plateau. The acceptable initial and boundary conditions,
characterizing the protostellar cloud at the beginning of its collapse, vary within
certain intervals, i.e. the conditions are not unique. One boundary of the inter-
vals is obviously the solution of group (ii). In this paper, we derive and present
an analytical solution - in the form of a power series - of the equations of motion
of a test point-like mass body in the central plateau. This solution shortens the
numerical calculations, e.g. in studying the dynamics of cometary nuclei within
the whole collapsing protosolar nebula.

2. The dynamics of a body in the central plateau

In view of the assumed spherical symmetry of the collapsing protostellar cloud,
a test point-like mass body moves in it in one plane crossing the centre. In this
plane, we can describe the position of the body using the cylindric coordinate
system r, 8. The equations of motion of the body acted upon by the gravitational
force of spherically symmetric mass M within radius r are
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where t is time, G is the gravitational constant, and h is a constant characterizing
the momentum of the test body. The time derivative of angle 6 in (1) can be
eliminated by using (2) and, instead of (1), we obtain
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In our problem, mass M depends on distance r and time ¢, and can only
be obtained from the equations describing the collapse (e.g., Whitworth and
Summers, 1985):

oM

W - 47T’f'2p = 0, (4)
oM
B + 47r?pv = 0, (5)
ov Oov GM 10P
E+v5+r—2+gﬁ_0’ (6)
and, in the case of isothermal gas,
P = ap, (7)

where p(r,t) is density, P(r,t) is pressure, v(r,t) is the velocity of the radial flux
(positive, if the flux is orientated outward), and a, is the uniform and constant
velocity of sound. If m is the mean molecular weight of the gas, and T is its
temperature, then a, = /kT/m (k is Boltzmann’s constant).

Again drawing on the excellent paper by Whitworth and Summers (1985),
we introduce dimensionless variable x defined by

T = Tayt (8)

and dimensionless quantities w, y, z defined by

wa’t
M = 9
%l ©)
U = Yao, (10)
z
p - 477Gt27 (11)

which are functions of z. Using these quantities and relation (7), equations (4)-
(6) can be modified to read:

w = (o —y)z?, (12)

dy _Y(z,y,2)

&= X(@y) (13)

dz _ Z(xz,y,2)

&= X(@y) (4

where

X=(@—-y?’-1, (15)

Y =(z—y)’z -2z —y)/z, (16)

Z = (z—y)2* - 2(x —y)*2/x. (17)
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We remind the reader that the instant, when the shock front reaches the centre
of the cloud, is considered here to be the origin of time, ¢t = 0.

According to Whitworth and Summers, sound point z, is that, at which
X =Y = Z = 0. This point represents the shock front. The solution of the flat
density of the central plateau is characterized by x5 = —3. The constancy of the
density in the cloud’s interior yields z = constant. This means (see equation
(14)) Z =0 for every x €< x5,0 >. From equations (13) and (15)-(17), one can
easily find that z = 2/3 and y = 2z/3 in this interval. Consequently, w = 223 /9
and

2 73
=—— 18
9G t2 (18)
in the central plateau. Using the latter, we can modify equation (3) to read
d*r
2,3 2,2 4 _

The initial and boundary conditions in the complete solution given by Whit-
worth and Summers are those at time ¢t - —oco. In a specific calculation, how-
ever, we rather know the conditions at a finite time ¢, before the instant when
shock front impacts the centre. We denote the absolute value of t, as |t5| = 7.
It appears appropriate to introduce a new variable, u, defined as

w17 (20)

T

Clearly, u €< 0,1) in the central plateau. Equation (19) can now be expressed

as
3(u —1)%r%" —9h%(u — 1)? +

2
> =t =0, (21)
T

T2

where 7" is the second derivative of r with respect to u.
Let us search for the solution of differential equation (21) in the form of a
power series:

o0
r=go+qu+qu’+gu’+. =) gl (22)
=0

If distance r and its second derivative with respect to u are inserted into equation
(21), it is actually possible to obtain the recurrent formula for coefficients ¢; after
some routine algebra:

j—1

1
4G =——7— |Bj— k(k —1)qrqj—« 23
J ,7(,7 _ l)qo J kZZQ ( ) J ( )
for j =3, 4, 5,..., where
1 j—4 j—3
Bj = g4 ~9) AxBj k2 +18> ArBj g1
k=0 k=0
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j—2 j—2
=9 "ABj_k —2)_ ArAj_k» (24)
k=1 k=0
for j =5,6,7,... and
i
A= argiok (25)
k=0

for j =0, 1, 2,.... Coefficient g2 and the lacking Bs, Bs, and By are given by
the relations

B,
Q@2 = %7 (26)
=T 1)
B3 = ﬁ [1840B> — 18h%7% — 440 A1 — 94, By], (28)
and
B, = ﬁ [~9A40B> + 18 (Ao Bs + A1B>) — 9 (A1 Bs + A2 Bs) +

+9h*7% — 2 (24042 + A7)], (29)

respectively.

The same procedure can be used to obtain a solution for angle 6 on the basis
of equation (2). Using dimensionless variable u, the equation can be altered to

20 = hr, (30)

where 6 is the first derivative of 6 with respect to u. Further, let us search for
a solution in the form of a power series:

0 = sp+ s1u+ sou® + szud + ... = Zsjuj. (31)
Jj=0

After some routine algebra, we can again obtain the recurrent formula for coef-
ficients s;:

1 4
S = ——— kSkA',k 32
J ]AO kgl J ( )
for j =2, 3, 4,..., as well as the relationship between coefficient s; and constant
h:
A081 = hr. (33)
The solution expressed by power series (22), (31) is valid inside the central

plateau, where
0<r<3a,r(l—u). (34)
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In this particular case, we have to check, if the resultant r is within this interval
for the given u.

The critical value of variable u, at which the test body reaches the border
of the plateau (we denote it u.), can be computed, for instance, using Newton’s
iteration method. In the (n + 1)-st iteration step

o
— k
Ug;ntl = Ue;n + (3(107' — 70 — 3AoTUe;n — E Tk“e;n) .
k=1

- -1
. <3aoT + Z krku’gml> 7 (35)

k=1

where e, is the value at the n-th step.

3. On the convergence of the solution

Some specific examples (two are presented at the end of Sect. 5), in which
the orbit of a point-like mass body inside the central plateau was monitored by
numerical integration, as well as by calculation using power series (22) and (31),
prove that both the series are convergent, at least in these chosen examples.
Nevertheless, one has to be sure both the series are convergent in every case
inside the central plateau.

The complicated expression of coefficients ¢; and s; in terms of recurrent
formulas does not enable us to use any convergence criterion directly. These
coefficients were, however, derived in such a way that series (22) and (31) have
to satisfy equations (21) and (30), respectively. The series have to satisfy these
equations even if they were divergent.

Let us first investigate the convergence of series (22). If we divide the appro-
priate equation (21) by r® and put @ = 9(u — 1)?/2 and 8 = 972h%(u — 1)?/2,
we can then express it as 8

ar" +r= 3 (36)

We divide series (22) into two series: the first consisting of terms in which all

coeflicients g; are positive, the second consisting of terms in which these are
negative. We denote these series by rp and ry, respectively. Explicitly,

rp = Z qi ul ) (37)

1=0;l£m

where ¢; > 0 for every [, and

o (e}

N = — Z gmu™ = Z gmu™, (38)

m=0;m#l m=0;m#l
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where —q,, = G > 0 for every m. The left-hand side of equation (36) can
similarly be expressed in terms of the series

o
Lp = Z (1 = 1)au'=? + ulq, (39)
1=0;l#m
where g; > 0 for every I, and
o
Ly =- Z [m(m — 1)au™ 2 + u™|gy, =
m=0;m%l
o
= Z [m(m — 1)au™ 2 + u™]Gm, (40)
m=0;m#l

where —q,,, = G, > 0 for every m. If we compare series (37) with series (39),
we can easily demonstrate that the inequality

ulg < [1(1 = o' =2 +ul]q (41)

is valid for all mutually corresponding terms (we remind the reader that v €< 0,
1)). This means series (39) is majorant to series (37). If series (39) converges,
series (37) also converges. In the case of series (38) and (40), it analogously
holds that

UG < [m(m — Dau™2 + u™]Gp, (42)

for all mutually corresponding terms. Hence, series (40) is majorant to series
(38).

The convergence of series (22) can be proved by controversy. Let us assume
that the series is divergent, i.e. r — oo. The right-hand side of equation (36) then
approaches zero, 3/r® — 0. Consequently, the left-hand side of this equation,
equal to difference Lp — Ly, has to approach zero. This is possible only if
Lp — L. (This is also possible if w — 0, or if all coefficients ¢; for j = 2, 3,
4,..., 00 are zero. However, r = qq, or r = qo + q1u, respectively, in the two cases.
Hence, r is not divergent.) In the other cases, both majorant series Lp and Ly
approach zero, therefore neither series rp and ry, nor, consequently, series (22)
can be divergent.

In the problematic case of Lp = Ly, explicitly

oo o0
D M -Dou' g +dlgl= D [mim—1au™ *Gn +u"Gm), (43)
1=05l#m m=0;m##l

we shall proceed in the following way. Let us assume that

o0 oo

o da= D uMgm (44)

1=05l#m m=0;m#l
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for series rp and ry within the whole interval of admissible values of u. After
taking the second derivative of the latter with respect to u, we obtain

Z 11— 1u'2q = Z m(m — 1)u™ 2G,,. (45)
1=05l#m m=0;m#l

If we further multiply equation (45) by a and add it to equation (44), we arrive
at equation (43). Since the only point of departure in this particular derivation of
equation (43) is equation (44), we can conclude that either both these equations
are satisfied, simultaneously, or that neither is satisfied. In other words, if Lp =
Ly, also rp = ry and, consequently, r = rp — ry = 0, which disagrees with
the assumption of the divergence of series (22). Hence, if it were divergent, then
Lp # Ly would hold true.

We shall prove the convergence of series (31) in a similar way. We again
separate the terms with positive and negative coefficients s;, which yields the
series

ep = Z ulsl, (46)
I=1;l#m
where s; > 0 for every [, and
On = — Z U Sy = Z u" 8, (47)
m=1;m#l m=1;m#l

where —s,,, = §,, > 0 for every m. Obviously 8 = sg + 0p — 0. Differentiating
both the series with respect to u, we obtain the series

o0
Sp = Z lul_lsl, (48)
I=1;l#m
where s; > 0 for every [, and
o0 o
Sy =— Z mu™ ts,, = Z mu™ 5, (49)
m=1;m#l m=1;m#l

where —s,;, = §,,, > 0 for every m. Also
uls; <t tg (50)

and
U™y < mu™ 13, (51)

within interval u €< 1,0) for every admissible [ > 1, as well as m > 1, respec-
tively. On the basis of these inequalities, series (48) and (49) are majorant to
series (46) and (47), respectively.
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We shall again prove the convergence of series (31) by controversy. The series
is associated with equation (30), which has to be satisfied even if the series is
divergent. If we divide this equation by r2, the right-hand side hr/r? — 0
as r = oo. As a consequence, neither of majorant series Sp and Sy can be
divergent. Therefore, the series (31), being the difference of (46) and (47), cannot
be divergent. The case Sp — Sn could again seem to be exceptional. However, if
we integrate equation Sp = Sy over u, we obtain equation 8p = 0 + constant.
Hence, 0 = 0p — Oy = constant if Sp = Sy, and series (31) is not divergent.

4. Initial and boundary conditions

We assume that the position and velocity vectors of the test point-like body at
the beginning of the cloud collapse are given.

Equation (21) is a differential equation of the second order, therefore two
constants have to be determined from the initial and boundary conditions. In
Sect. 2, we give all the coefficients of power series (22) being the solution, except
for qp and ¢;. One can easy see that gp is the distance of the test body from the
centre of the cloud at the beginning of the collapse, ¢, = —7, when u = 0, and
q1 is the radial component of the velocity of the body at that moment.

Equation (30) is a differential equation of the first order, therefore, one con-
stant has to be determined from the initial and boundary conditions. At the
beginning, when u = 0, clearly angle 8 is identical to coefficient s¢ in power
series (31) being the solution. Moreover, it is also clear that coefficient s; rep-
resents the transverse component of the velocity of the body at the beginning.
As we assume that the position and velocity of the body at the beginning are
known in full, i.e. we know coefficient s; from the initial conditions, we can use
relation (33) to express constant b in Kepler’s Law (2).

A problem arises from the unknown constant 7 representing the duration
of the central plateau. The constant can be determined only from the quan-
tities characterizing the plateau at the beginning of the collapse, i.e. its mean
molecular weight, temperature, radius, and total mass (or density). The mean
molecular weight equals about 2.34 for a cool Hs + He gas. The temperature of
cool, dense, molecular clouds has been estimated to be of the order of 10" K. We
note there is a convention to assume the very value 10 K. This value has been
assumed by Larson (1969, 1972), Stahler et al. (1980), Hayashi et al. (1985),
Spitzer (1985), and Boss (1989), for example. If the mean molecular weight and
temperature are known, the velocity of sound can be calculated.

How, we have already mentioned above; Whitworth and Summers (1985)
transferred the initial and boundary conditions to infinity. This exactly means,
ast - —oo, p > 0 and v — 0 everywhere, and as r — +o00, p — 0 and
v — v, at all finite times. Though the limits seem to be simple, their conversion
to parameters z(0), w(0) characterizing a given complete solution is not trivial
in a specific real case. Usually, we assume the properties of the cloud at a
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finite time ¢, before the instant, when the shock front reaches the centre, i.e.
before ¢ = 0. Besides the chemical composition (mean molecular weight) and
temperature, we, moreover, have to assume one more quantity of three: density
(ppb), radius (Rpp), and total mass (M), which characterize the plateau at t.
Applying equations (8), (9), and (11), we can express two of these, if the third
is assumed, as follows:

4
My = ey, 2)
6al
= — 53
Ppb 7TG3MI?I; ’ ( )
1GMupm
pr = 30107' = §T§1b (54:)

Larson (1969, 1972) assumed that mass M, is roughly equal to the mass of the
star to originate. (Note that he considered the cloud identical to the plateau,
without an envelope at the beginning of its collapse. As no external pressure was
thus assumed, he found, applying Jeans’ criterion, factor 0.46 instead of 1/2 on
the right-hand side of the identity in relation (54). In practice, he actually used
an even lower factor, 0.41, because of a difficulty in numerical calculations.)

If density ppp is known, then

1

\/67G ppy '

(55)

T=—t) =

5. Summary

The motion of a point-like mass body in the interior - central plateau - of a
collapsing protostellar cloud, with a flat density, can be described analytically
by two power series - relations (22) and (31). The appropriate recurrent formulas
were found to express their coeflicients. The first series gives the distance of the
body, 7, from the centre of the cloud, the second gives the angle § between the
radius vector and the z—axis, both being in the plane of motion of the body.
The position and velocity vectors of the body at any time during the plateau’s
existence are determined by the following procedure. At the beginning of the
collapse, time t3, the initial position and velocity vectors of the body are given.
Their components give the first two coefficients in both series (see the second
paragraph of Sect. 4). To obtain the higher coefficients, we need to know the
isothermal sound velocity a,, as well as constants A and 7 occuring in the re-
current formulas. If 7 is known, h can be calculated using relation (33). To
determine a, and 7, we have to know or assume the properties of the central
plateau at the beginning of the collapse. Specifically, its chemical composition
(mean molecular weight), temperature, density, and radius have to be known.
To reduce the number of initial quantities, we can use relations (52)-(54) giving
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the relationship between them. Constant 7 can be calculated with the aid of
relation (54) or (55).

Given the first two coefficients of each series, as well as constants a,, h, and
T, we can compute the higher coefficients of the first and second series using
relations (23)-(29) and (32), respectively.

The test body must leave the central plateau at some time. As the solution
found is valid only inside the plateau (except for its centre), we always have to
check, if the body is still located inside it, i.e. we have to check, if inequality (34)
is satisfied. The instant, when the body leaves the plateau, can be determined
using, for instance, Newton’s iteration method - see the last paragraph of Sect.
2 containing the appropriate relation (35).

Although the analytical solution found can only be used in a constrained
time and space interval, some analogous numerical computations, using Runge-
Kutta’s method, show that a computation using the analytical solution takes a
much shorter time than the corresponding numerical integration. For example,
let us observe a body whose position is characterized by coordinates r = 0.7 Ry,
6 = 0° and velocity vector v, = —0.05 vcpp, v = 0.1 vpp at the beginning of the
collapse, t = —1 (v, v; are the radial and transverse components of velocity,
respectively, and vcpp is the circular velocity around the plateau at distance
r = Rpy from its centre at the moment of the beginning of the collapse; this
velocity appears to be a suitable velocity scale). Let us further calculate the
position of the body with 1 per mille accuracy at the moment, when it leaves
the central plateau, using the Power-Basic compiler executable with a 486 PC
processor. This Power-Basic the computational time to be accounted for easily.
The calculation using our result, i.e. series (22) and (31), takes 0.055 seconds
(it is sufficient to use the first 5 terms of these series in this case), whereas the
corresponding numerical integration of the orbit takes 0.165 seconds. Thus, the
latter takes 3 times longer. In another example, in which the position of the
body is characterized by coordinates r = 0.1R,,, § = 0° and velocity vector
vy = 0.02 v, vy = 0.03 v, the calculation takes 0.11 seconds using series (22)
and (31) (here, we already have to use the first 50 terms of each series), as
opposed to the corresponding numerical integration which takes 1.81 seconds,
if the same accuracy is required and if the procedure is analogous. It is thus
16.5 times longer. Such a considerable reduction of computational time can be
helpful, if the dynamics of a huge number of bodies (cometary nuclei of an
originating Oort cloud in the collapsing protosolar nebula, for example) is being
studied.
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