Quantum Geometry
Quantum Geometry
* 2024 *
-
Muller, A., Saniga, M., Giorgetti, A., Holweck, F., and Kelleher, C.: 2024,
A New Heuristic Approach for Contextuality
Degree Estimates and its Four- to Six-Qubit Portrayals, submitted.
[Also
https://arXiv.org/abs/2407.02928].
-
Muller, A., Saniga, M., Giorgetti, A., Holweck, F., and de Boutray, H.: 2024,
New and Improved Bounds on the Contextuality
Degree of Multi-Qubit Configurations, Mathematical
Structures in Computer Science, Vol. 34, Issue 4, pp. 322-343.
[Also
https://arXiv.org/abs/2305.10225].
* 2023 *
-
Saniga, M., Holweck, F., Kelleher, C., Muller, A., Giorgetti, A., and de Boutray, H.: 2023,
Classically-embedded split Cayley
hexagons rule three-qubit contextuality with three-element contexts, Quantum, in press.
[Also
https://arXiv.org/abs/2312.07738].
* 2022 *
-
Muller, A., Saniga,
M., Giorgetti, A., de Boutray, H., and Holweck, F.: 2022, Multi-Qubit Doilies:
Enumeration for All Ranks and Classification for Ranks Four and
Five, Journal
of Computational Science, Vol. 64, 101853 (18 pages).
[Also
https://arXiv.org/abs/2206.03599].
-
de Boutray, H.,
Holweck, F., Giorgetti, A., Masson, P.-A., and Saniga, M.: 2022, Contextuality Degree of Quadrics in Multi-Qubit
Symplectic Polar Spaces, Journal of Physics A:
Mathematical and Theoretical, Vol. 55, No. 47, 475301 (19 pages).
[Also
https://arXiv.org/abs/2105.13798].
-
Holweck, F., de
Boutray, H., and Saniga, M.: 2022, Three-Qubit-Embedded
Split Cayley Hexagon is Contextuality Sensitive, Scientific Reports, Vol. 12, 8915
(9 pages).
[Also
https://arXiv.org/abs/2202.00726].
* 2021 *
- Saniga, M., de Boutray, H., Holweck, F., and
Giorgetti, A.: 2021, Taxonomy of Polar Subspaces
of Multi-Qubit Symplectic Polar Spaces of Small Rank, Mathematics, Vol. 9,
No. 18, 2272 (18 pages).
[Also
https://arXiv.org/abs/2105.03635].
- Saniga, M.: 2021,
Taxonomy of Three-Qubit Doilies, an
invited minisymposium talk given at the 8th
European Congress of Mathematics, Portoroz (Slovenia), on June 23, 2021.
- Saniga, M.: 2021, A Class of Three-Qubit
Contextual Configurations Located in Fano Pentads, Mathematics, Vol. 9,
No. 13, 1524 (6 pages).
[Also
http://arXiv.org/abs/2004.07517].
- Kelleher, C., Holweck,
F., Lévay, P., and Saniga, M.: 2021, X-States From a Finite
Geometric Perspective, Results in
Physics, Vol. 22C, 103859 (9 pages).
[Also
http://arXiv.org/abs/2008.03063].
* 2020 *
- Saniga, M., Holweck, F., and Jaffali, H.: 2020, Taxonomy of Three-Qubit
Mermin Pentagrams, Symmetry, Vol. 12, No. 4, 534 (7 pages).
[Also
http://arXiv.org/abs/1911.11401].
* 2019 *
- Saniga, M.: 2019, Doily - A Gem of the
Quantum Universe, an invited minisymposium talk given at the 9th Slovenian International
Conference on Graph Theory, Bled (Slovenia), on June 28, 2019.
* 2018 *
- Saniga, M.: 2018, Finite Geometries Relevant for Quantum
Information, an invited talk given at the Graph Theory Seminar,
Department of Computer Science, FMPI, Comenius University, Bratislava
(Slovakia), on February 22, 2018.
- Saniga, M.: 2018, Finite Geometries: Other Notable Examples, an
invited talk given at the Algebraic Graph Theory Seminar, Department of
Algebra, Geometry and Math Education, FMPI, Comenius University, Bratislava
(Slovakia), on February 23, 2018.
* 2017 *
- Saniga, M.: 2017, A Combinatorial Grassmannian
Representation of the Magic Three-Qubit Veldkamp Line, Entropy, Vol. 19, No.
10, 556 (6 pages). [Also
http://arXiv.org/abs/1709.02578].
- Saniga, M.: 2017,
Polar Spaces and Generalized Polygons
Shaping Quantum Information, an invited talk given at the 55-th Summer School on
Algebra and Ordered Sets, Nový Smokovec/High Tatras (Slovak
Republic), on September 7, 2017.
- Saniga, M.: 2017, Polar Spaces and Generalized Polygons with Quantum
Physical Flavor, an invited seminar talk given at the Department of
Physics and Engineering, Elizabethtown
College, Elizabethtown (U. S. A.), on April 24, 2017.
- Lévay, P., Holweck, F., and Saniga, M.: 2017, The Magic Three-Qubit Veldkamp Line: A Finite Geometric
Underpinning for Form Theories of Gravity and Black Hole Entropy,
Physical Review D, Vol. 96,
No. 2, 026018 (36 pages).
[Also
http://arXiv.org/abs/1704.01598].
- Holweck, F., and
Saniga, M.: 2017, Contextuality with a Small
Number of Observables, International Journal
of Quantum Information, Vol. 15, No. 4, 1750026 (12 pages).
[Also
http://arXiv.org/abs/1607.07567].
- Saniga, M., Holweck,
F., and Pracna, P.: 2017, Veldkamp
Spaces: From (Dynkin) Diagrams to (Pauli) Groups, International
Journal of Geometric Methods in Modern Physics, Vol. 14, No. 5,
1750080 (23 pages).
[Also
http://hal.archives-ouvertes.fr/hal-01312517 and
http://arXiv.org/abs/1605.02001].
* 2015 *
- Planat, M., Giorgetti, A., Holweck, F., and Saniga, M.: 2015,
Quantum Contextual Finite Geometries from Dessins
d'Enfants, International
Journal of Geometric Methods in Modern Physics, Vol. 12, No. 7,
1550067 (18 pages).
[Also
http://hal.archives-ouvertes.fr/hal-00873461 and http://arXiv.org/abs/1310.4267].
* 2014 *
- Holweck, F., Saniga, M., and
Lévay, P.: 2014, A Notable Relation
Between N-Qubit and 2^{N-1}-qubit Pauli groups via Binary LGr(N,
2N), Symmetry, Integrability
and Geometry: Methods and Applications, Vol. 10, Paper 041, 16 pages.
[Also
http://hal.archives-ouvertes.fr/hal-00903272, http://arXiv.org/abs/1311.2408,
and Oberwolfach
Preprint OWP-2013-25 ].
* 2013 *
- Saniga, M.: 2013, Finite Geometries with a
Quantum Physical Flavor, a series of four introductory lectures
delivered at the Laboratory IRTES-M3M, University of Technology of
Belfort-Montbeliard, Belfort (France), on September 19 and 26, 2013.
- Lévay, P., Planat, M., and Saniga, M.: 2013, Grassmannian Connection Between Three- and
Four-Qubit Observables, Mermin's Contextuality and Black Holes, Journal
of High Energy Physics, Vol. 09, 037 (35pp).
[Also
http://hal.archives-ouvertes.fr/hal-00825701, http://arXiv.org/abs/1305.5689,
and Oberwolfach
Preprint OWP-2013-17].
- Saniga, M.: 2013, Finite Geometries with a Quantum Physical
Flavour, an invited talk given at the 14th Conference of
Košice's Mathematicians, Herľany (Slovak Republic), April 5,
2013.
- Planat, M., Saniga, M., and Holweck, F.: 2013, Distinguished Three-Qubit `Magicity' via Automorphisms
of the Split Cayley Hexagon, Quantum
Information Processing, Vol. 12, No. 7, pp. 2535-2549.
[Also
http://hal.archives-ouvertes.fr/hal-00763975 and http://arXiv.org/abs/1212.2729].
* 2012 *
- Saniga, M.: 2012, Finite Ring Geometries of Multi-Qudits and Black
Holes, a talk given at my doctoral thesis defense, Comenius
University, Bratislava (Slovak Republic), September 25, 2012.
- Saniga, M., Planat, M., Pracna, P., and Lévay, P.: 2012, `Magic' Configurations of Three-Qubit Observables and
Geometric Hyperplanes of the Smallest Split Cayley Hexagon, Symmetry, Integrability
and Geometry: Methods and Applications, Vol. 8, 083 (9pp).
[Also
http://hal.archives-ouvertes.fr/hal-00708602 and http://arXiv.org/abs/1206.3436].
- Planat, M. and Saniga, M.: 2012, Five-Qubit Contextuality, Noise-Like Distribution
of Distances Between Maximal Bases and Finite Geometry, Physics Letters
A, Vol. 376, No. 46, pp. 3485-3490.
[Also
http://hal.archives-ouvertes.fr/hal-00703166 and http://arXiv.org/abs/1206.0105].
- Saniga, M., and Planat, M.: 2012, Finite Geometry Behind the
Harvey-Chryssanthacopoulos Four-Qubit Magic Rectangle, Quantum
Information and Computation, Vol. 11, Nos. 11-12, pp. 1011-1016.
[Also
http://hal.archives-ouvertes.fr/hal-00692040 and http://arXiv.org/abs/1204.6229].
- Saniga, M., Lévay, P., and Pracna, P.: 2012, Charting the Real Four-Qubit Pauli Group via Ovoids
of a Hyperbolic Quadric of PG(7,2), Journal of Physics A:
Mathematical and Theoretical, Vol. 45, No. 29, 295304 (16pp).
[Also
http://hal.archives-ouvertes.fr/hal-00669929 and http://arXiv.org/abs/1202.2973].
- Saniga, M.: 2012, Finite
Projective Spaces, Geometric Spreads of Lines and Multi-Qubits, International Journal of
Modern Physics B, Vol. 26, Nos. 27-28, 1243013 (3pp).
[Also
http://hal.archives-ouvertes.fr/hal-00477098 and http://arXiv.org/abs/1004.4967].
- Saniga, M., and Lévay, P.: 2012, Mermin's Pentagram as an Ovoid of
PG(3,2), EPL
(Europhysics Letters), Vol. 97, No. 5, 50006.
[Also
http://hal.archives-ouvertes.fr/hal-00644786 and http://arXiv.org/abs/1111.5923].
* 2011 *
- Havlicek, H., Odehnal, B.,
and Saniga, M.: 2011, Mutually Inscribed
and Circumscribed Simplices - Where Moebius Meets Pauli , a seminar
talk given at the Department of Mathematics, University of Warmia a Mazury,
Olsztyn (Poland), September 21, 2011.
- Havlicek, H., Odehnal,
B., and Saniga, M.: 2011, On Moebius Pairs
of Simplices, a contributed talk given at the 10th conference on
Geometry and Applications, held in Varna (Bulgaria), September 3 - 9, 2011.
- Havlicek, H., Odehnal, B., and Saniga, M.: 2011, Moebius Pairs and Pauli Operators, a
contributed talk given at the conference on Geometry - Theory and
Applications, held in Vorau (Austria), June 20 - 24, 2011.
- Saniga, M., and Planat, M.: 2011, A
Sequence of Qubit-Qudit Pauli Groups as a Nested Structure of
Doilies, Journal of
Physics A: Mathematical and Theoretical, Vol. 44, No. 22, 225305
(12pp).
[Also
http://hal.archives-ouvertes.fr/hal-00566457 and http://arXiv.org/abs/1102.3281].
- Planat, M., Lévay, P., and Saniga, M.: 2011, Balanced Tripartite Entanglement, the Alternating Group
A_4 and the Lie Algebra sl(3,C) oplus u(1), Reports on Mathematical
Physics, Vol. 67, No. 1, pp. 39-51.
[Also
http://hal.archives-ouvertes.fr/hal-00437860 and http://arXiv.org/abs/0912.0172].
* 2010 *
- Havlicek, H., Odehnal, B.,
and Saniga, M.: 2010, Moebius Pairs of
Simplices and Commuting Pauli Operators, Mathematica Pannonica,
Vol. 21, pp. 115-128.
[Also
http://hal.archives-ouvertes.fr/hal-00389288 and http://arXiv.org/abs/0905.4648].
- Saniga, M., and Pracna, P.: 2010, Space versus Time:
Unimodular versus Non-Unimodular Projective Ring Geometries?, Journal of Cosmology (Invited
Paper), Vol. 4, pp. 719-735.
[Also
http://hal.archives-ouvertes.fr/hal-00308892 and http://arXiv.org/abs/0808.0402].
* 2009 *
- Saniga, M.: 2009, From Pauli Groups to Stringy Black Holes: Part II -
Generalized Polygons, Geometric Hyperplanes and Some Distinguished
Graphs, invited lecture presented within the framework of the ZiF
Cooperation Group Finite Projective
Ring Geometries, Bielefeld (Germany), August 28, 2009.
- Saniga, M.: 2009, From Pauli Groups to
Stringy Black Holes: Part I - Projective (Near)Ring Lines, invited
lecture presented within the framework of the ZiF Cooperation Group Finite Projective
Ring Geometries, Bielefeld (Germany), August 27, 2009.
- Saniga, M., Lévay, P., Vrana, P., and Pracna, P.: 2009, GQ(2,4), Split Cayley Hexagon of Order Two and Black
Hole Entropy Formulas, an invited talk presented at the
miniworkshop on Groups,
Discrete Geometry and Quantum Information, held at the Institute of
Nuclear Physics of Lyon, Lyon (France), June 11, 2009.
- Lévay, P., Saniga, M., Vrana, P., and Pracna, P.: 2009, Black Hole Entropy, Finite Geometry and Mermin
Squares, an invited talk presented at Princeton University, Princeton
(U. S. A.), May 21, 2009.
- Havlicek, H., Odehnal, B., and
Saniga, M.: 2009, Factor-Group-Generated
Polar Spaces and (Multi-)Qudits, Symmetry, Integrability
and Geometry: Methods and Applications, Vol. 5, Paper 096, 15 pages.
[Also
http://hal.archives-ouvertes.fr/hal-00372071 and http://arXiv.org/abs/0903.5418].
- Lévay, P., Saniga, M., Vrana, P., and Pracna, P.: 2009,
Black Hole Entropy and Finite
Geometry, Physical Review D, Vol.
79, No. 8, 084036 (12 pages); paper was selected for the May 2009 issue of
Virtual Journal of Quantum
Information covering a focused area of frontier research.
[Also http://arXiv.org/abs/0903.0541].
- Lévay, P., Saniga, M., and Vrana, P.: 2009, Three-Qubit Operators, the Split Cayley Hexagon of Order
Two and Black Holes, an invited talk presented at the
Mathematical Physics Workshop UQ 2009, held at the University of
Queensland, Coolangatta (Australia), February 3 - 6, 2009.
* 2008 *
- Lévay, P., Saniga, M., and Vrana, P.: 2008, Three-Qubit Operators, the Split Cayley Hexagon of Order
Two and Black Holes,
Physical Review D, Vol. 78, No. 12, 124022
(16 pages); paper was selected for the January 2009 issue of
Virtual Journal of Quantum Information covering a focused area of
frontier research.
[Also
http://hal.archives-ouvertes.fr/hal-00315306
and
http://arXiv.org/abs/0808.3849].
- Saniga, M., and Pracna, P.: 2008, Space versus Time: Unimodular versus
Non-Unimodular Projective Ring Geometries?, presented at
"The Clock and the Quantum: Time and Quantum Foundations," held at the
Perimeter
Institute, Waterloo (Canada), September 28 -- October 2,
2008.
[Also
http://hal.archives-ouvertes.fr/hal-00308892
and
http://arXiv.org/abs/0808.0402].
- Saniga, M., Planat, M., and Pracna, P.: 2008, Projective Ring Line Encompassing Two-Qubits,
Theoretical and Mathematical
Physics, Vol. 155, No. 3, pp. 905-913.
[Also
http://hal.archives-ouvertes.fr/hal-00111733
and
http://arXiv.org/abs/quant-ph/0611063].
- Havlicek, H., and Saniga, M.: 2008,
Qudits and Geometry over Rings,
a
talk given at the 35th workshop on
Geometry and Algebra,
held in Berlin (Germany), February 28 - March 4,
2008.
- Planat, M., Baboin, A.-C., and Saniga, M.: 2008, Multi-Line Geometry of Qubit-Qutrit and Higher-Order
Pauli Operators,
International Journal of
Theoretical Physics,
Vol. 47, pp. 1127-1135.
[Also
http://hal.archives-ouvertes.fr/hal-00147435
and
http://arXiv.org/abs/0705.2538].
- Havlicek, H., and Saniga, M.: 2008, Projective Ring Line of an Arbitrary Single Qudit,
Journal
of Physics A: Mathematical and Theoretical,
Vol. 41, No. 1, 015302 (12pp).
[Also
http://hal.archives-ouvertes.fr/hal-00176551
and
http://arXiv.org/abs/0710.0941].
- Planat, M., and Saniga, M.: 2008, On the Pauli Graph of N-Qudits,
Quantum Information
and Computation, Vol. 8, No. 1-2, pp. 0127-0146.
[Also
http://hal.archives-ouvertes.fr/hal-00127731
and
http://arXiv.org/abs/quant-ph/0701211].
* 2007 *
- Saniga, M.: 2007,
A Fine Structure of Finite Projective Ring Lines,
an invited
talk given at the workshop on
Prolegomena
for Quantum Computing,
held in Besançon (France), November 21 -- 22,
2007.
[Also
http://hal.archives-ouvertes.fr/hal-00199008].
- Havlicek, H., and Saniga, M.: 2007, Projective Ring Line of a Specific Qudit,
Journal
of Physics A: Mathematical and Theoretical,
Vol. 40, No. 43, pp. F943-F952.
[Also
http://hal.archives-ouvertes.fr/hal-00169103
and
http://arXiv.org/abs/0708.4333].
- Planat, M., and Saniga, M.: 2007,
Finite Geometries and Quantum Information, a
talk given at the Colloque Thematique du GdR on Aspects Theoriques de l'Information
Quantique,
held in Aspet (France), June 7 - 8,
2007.
- Saniga, M., Planat, M., Pracna, P., and Havlicek, H.: 2007, The Veldkamp Space of Two-Qubits,
Symmetry, Integrability and
Geometry: Methods and Applications, Vol. 3, Paper 075, 7 pages.
[Also
http://hal.archives-ouvertes.fr/hal-00139548
and
http://arXiv.org/abs/0704.0495].
- Saniga, M.: 2007,
Geometry of Two-Qubits, a
seminar talk given at the Institute of Computer Science,
Academy of Sciences of the Czech Republic, Prague (Czech Republic), on January 25,
2007.
- Planat, M., and Saniga, M.: 2007,
The N-Qudit Fabric: Pauli Graph and Finite
Geometries, an
invited talk given at the 10th International Conference on Squeezed States and
Uncertainty Relations,
held in Bradford (U.K.), March 31 -- April 4,
2007.
- Planat, M., and Saniga, M.: 2007,
Pauli Graph and Finite Projective
Lines/Geometries, a talk given at the biannual SPIE International
Congress on Optics and Optoelectronics,
held in Prague (Czech Republic), April 16 -- 20,
2007.
Proc. SPIE 6583, 65830W.
[Also
http://hal.archives-ouvertes.fr/hal-00137107
and
http://arXiv.org/abs/quant-ph/0703154].
- Saniga, M., and Planat, M.: 2007, Projective Line over the Finite Quotient
Ring GF(2)[x]/(x^3 - x) and Quantum Entanglement:
Theoretical Background,
Theoretical and Mathematical
Physics, Vol. 151, No. 1, pp. 474-481.
[Also
http://hal.ccsd.cnrs.fr/ccsd-00020182
and
http://arXiv.org/abs/quant-ph/0603051].
- Saniga, M., Planat, M., and Minarovjech, M.: 2007, Projective Line over the Finite Quotient
Ring GF(2)[x]/(x^3 - x) and Quantum Entanglement:
The Mermin "Magic" Square/Pentagram,
Theoretical and Mathematical
Physics, Vol. 151, No. 2, pp. 625-631.
[Also
http://hal.ccsd.cnrs.fr/ccsd-00021604
and
http://arXiv.org/abs/quant-ph/0603206].
- Saniga, M., and Planat, M.: 2007, Multiple Qubits as Symplectic Polar Spaces of Order
Two,
Advanced Studies in
Theoretical Physics, Vol. 1, No. 1, pp. 1-4.
[Also
http://hal.archives-ouvertes.fr/hal-00121565
and
http://arXiv.org/abs/quant-ph/0612179].
* 2006 *
- Saniga, M.: 2006,
Projective Lines over Finite Rings, a
seminar talk given at the Institute of Computer Science,
Academy of Sciences of the Czech Republic, Prague, on September 26,
2006.
- Saniga, M.: 2006,
Projective Lines over Finite Rings, a
seminar talk given at the Research Center for Quantum Information,
Institute of Physics, Slovak Academy of Sciences, Bratislava, on August 10,
2006.
- Planat, M., Saniga, M., and Kibler, M. R.: 2006, Quantum Entanglement and Projective Ring
Geometry,
Symmetry, Integrability and
Geometry: Methods and Applications,
Vol. 2, Paper 066, 14 pages.
[Also
http://hal.ccsd.cnrs.fr/ccsd-00077093
and
http://arXiv.org/abs/quant-ph/0605239].
- Saniga, M., and Planat, M.: 2006, Finite Geometries in Quantum Theory: From Galois
(Fields) to Hjelmslev (Rings),
International Journal of
Modern Physics B, Vol. 20, Nos. 11-13, pp. 1885-1892.
- Saniga, M., and Planat, M.: 2006, Hjelmslev Geometry of Mutually Unbiased
Bases,
Journal
of Physics A: Mathematical and General,
Vol. 39, No. 2, pp. 435-440.
[Also
http://hal.ccsd.cnrs.fr/hal-00005539
and
http://arXiv.org/abs/math-ph/0506057].
- Saniga, M., and Planat, M.: 2006,
Finite Geometries in
Quantum Theory: From Galois (Fields) to Hjelmslev (Rings), a
poster paper presented at the Ninth Workshop on Quantum
Information Processing, held in Paris (France), January 16 - 20,
2006.
* 2005 *
- Planat, M., and Saniga, M.: 2005, Galois Algebras of Squeezed Quantum Phase
States,
Journal of Optics B: Quantum and Semiclassical Optics, Vol. 7, No. 12,
pp. S484-S489.
[Also
http://hal.ccsd.cnrs.fr/ccsd-00013307].
- Planat, M., and Saniga, M.: 2005, Abstract Algebra, Projective Geometry
and Time Encoding of Quantum Information, in R. Buccheri,
A.C. Elitzur and M. Saniga (eds.),
Endophysics, Time, Quantum and the
Subjective, World Scientific Publishers, Singapore, pp. 409-426.
[Also
http://hal.ccsd.cnrs.fr/ccsd-00004513
and
http://arXiv.org/abs/quant-ph/0503159].
- Planat, M., and Saniga, M.: 2005, Two-Qutrits from Miniquaternions, a
poster paper presented at the EPS-13
Beyond Einstein: Physics
for the 21st Century,
held in Bern (Switzerland), July 11 - 15,
2005.
- Saniga, M., and Planat, M.: 2005, Ovals in Finite Projective Planes
and Complete Sets of Mutually Unbiased Bases (MUBs), a poster
paper presented at the 9th International Conference on Squeezed States and
Uncertainty Relations, held in Besançon (France), May 2 -
6,
2005.
- Planat, M., and Saniga, M.: 2005, Galois Algebras of Squeezed Quantum
Phase States, a talk given at the 9th International Conference on
Squeezed States and
Uncertainty Relations, held in Besançon (France), May 2 -
6,
2005.
- Saniga, M., and Planat, M.: 2005, Viewing Sets of Mutually Unbiased Bases as Arcs
in Finite Projective Planes,
Chaos,
Solitons & Fractals, Vol. 26, No. 5, pp. 1267-1270.
[Also
http://hal.ccsd.cnrs.fr/ccsd-00002952
and
http://arXiv.org/abs/quant-ph/0409184].
* 2004 *
- Planat, M., Rosu, H., Perrine, S. and Saniga, M.: 2004, Finite Algebraic Geometrical Structures
Underlying Mutually Unbiased Quantum Measurements.
[Also
http://arXiv.org/abs/quant-ph/0409081].
-
Rosu, H., Planat, M., and Saniga, M.: 2004, MUBs: From Finite Projective
Geometry to Quantum Phase Enciphering, a poster paper presented
at the seventh international conference on Quantum Communication,
Measurement and Computing, held in Glasgow (U.K.), July 24-29,
2004; published in CP734, American Institute of Physics, Boston, pp.
315-318.
[Also
http://arXiv.org/abs/quant-ph/0409096].
- Saniga, M., Planat, M., and Rosu, H.: 2004, Mutually Unbiased Bases and Finite
Projective Planes,
Journal of Optics B: Quantum and Semiclassical Optics, Vol. 6, No. 9,
pp. L19-L20.
[Also
http://arXiv.org/abs/math-ph/0403057].
Metod Saniga,
Last modified September 26, 2024
Back to Top